Неполярный конденсатор

Данные устройства представляют собой пассивные элементы, способные накапливать и хранить электрический заряд. Их отличительной особенностью является сохранение корректной работы при любом порядке подключения выводов в цепь. Это объясняется отсутствием серьезных различий в характеристиках сред, образующихся с двух сторон границы обкладок и диэлектрика.

Полярные конденсаторы имеют пару электродов: плюсовой и минусовой. Чтобы устройство могло функционировать, при его подсоединении в электроцепь необходимо соблюдение полярности. В противном случае элемент быстро придет в негодность или даже взорвется. Электролитические накопители этого типа имеют также черты полупроводникового элемента.
От неполярных эти устройства отличаются наличием существенной разницы физико-химических свойств между средами с двух сторон раздела, которые и создают полярность. В изготовлении обоих видов устройств применяются такие токопроводящие материалы, как алюминий и тантал.

Алюминиевые электролиты

Неполярный электролитический конденсатор с алюминиевыми обкладками отличается от других изделий довольно высоким показателем индуктивности. Она образуется вследствие скручивания обкладочных заготовок для более удобной установки в корпус-цилиндр. Несмотря на нецелесообразность индуктивных явлений в ряде случаев, изделия из алюминия пользуются популярностью, благодаря невысокой цене и доступности. Изготавливаются они в smd форме для монтажа на поверхность печатной плиты.

Главная сфера их применения – нивелирование пульсаций в цепях, где выпрямляется переменный ток. Также с помощью этих устройств пульсирующий электроток разделяется на постоянную и переменную компоненты (это применяется в устройствах, проигрывающих звукозаписи).

Важно! При выборе конденсатора желательно брать образец с меньшим значением ESR (эквивалентного последовательного сопротивления). Особенно это критично для систем, требующих фильтрации пульсаций с высокими частотами (например, блок питания ЭВМ).

Электролиты на основе тантала

Этот материал дает возможность создания высокоемких изделий, сохраняющих это свойство при значительных показателях рабочего напряжения. В отличие от предыдущего типа, они почти не имеют индуктивности, что обеспечивает им большую широту сферы применения. Изделия малогабаритны, работают стабильно, служат долго. Выпускаются в двух вариантах исполнения корпуса, заточенных под разные типы монтажа. Smd-варианты предназначены для размещения на поверхности платы. Они обладают высокой емкостью при миниатюрных размерах. Монтаж таких элементов осуществляется роботами. Есть изделия, снабженные длинными выводами, продеваемыми в дырочки на платах.

Изделия из полимеров

В таких устройствах вместо металлических обкладок применяются полимерные материалы, проводящие ток. В остальном по особенностям строения они идентичны ранее описанным категориям.

На отечественных советских изделиях обозначался только положительный контакт — знаком «+». Этот знак наносился на корпус рядом с положительным выводом. Иногда в литературе плюсовой вывод электролитических конденсаторов называют анодом, поскольку они не только пассивно накапливают заряд, но и применяются для фильтрации переменного тока, т.е. обладают свойствами активного полупроводникового прибора. В ряде случаев знак «+» ставят и на печатной плате, вблизи от положительного вывода размещенного на ней накопителя.

На изделиях серии К50-16 маркировку полярности наносят на дно, выполненное из пластмассы. У других моделей серии К50, например К50-6, знак «плюс» нанесен краской на нижнюю часть алюминиевого корпуса, рядом с положительным выводом. Иногда по низу также маркируются изделия импортные, произведенные в странах бывшего социалистического лагеря. Современная отечественная продукция отвечает общемировым стандартам.

Маркировка конденсаторов типа SMD (Surface Mounted Device), предназначенных для поверхностного монтажа (SMT — Surface Mount Technology), отличается от обыкновенной. Плоские модели имеют черный или коричневый корпус в виде маленькой прямоугольной пластины, часть которой у положительного вывода закрашена серебристой полосой с нанесенным на нее знаком «плюс».

Есть ли у неполярного конденсатора «полярность»?

Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

На сайте Jimmy’s Junkyard я нашел статью об определении у конденсаторов внешнего и внутреннего выводов обкладок.
Я решил опробовать данный метод на конденсаторах которые есть у меня. Я проверял данный метод на конденсаторах серии: К73-17, Epcos, Jancen M-Cap, Mundorf и мое мнение, что этот метод определения «полюса» конденсатора прекрасно работает.

Идея мне понравилась и я решил перевести данную статью для общественности. Думаю, такой простой тест пригодится для тех, кто строит аудиосистемы высокого разрешения.

Давно известно, что у конденсаторов есть внешняя и внутренняя обкладки и эти самые обкладки должны отличаться, ведь большинство из них производится по схожей технологии – наматыванием бумаги с нанесенным на нее проводящим слоем (серебряная, золотая или медная фольга), а у намотки имеется начало (внутренняя обкладка) и конец (соответственно внешняя). Хотя внутреннюю и внешнюю обкладки конденсатора можно подключать как к положительному, так и к отрицательному потенциалу, по некоей причине предпочтительно подключать к внешней обкладке отрицательный потенциал (или вход в случае разделительного конденсатора), а к внутренней — положительный. Интересно, почему? Да потому что внешняя обкладка будет ловить помехи из внешней среды.

Некоторые известные производители конденсаторов, такие как Audio Note, Jensen, Auricap, Hovland, VCap и др. помечают вывод внешней обкладки другим цветом либо черной полосой или точкой. Другие, такие как Mundorf не особенно заморачиваются на такие мелочи. Поэтому придётся определить это самому. Следует особо отметить Ultra-High-End конденсаторы типа Duelund, которые производятся по спецтехнологии из прессованной фольги и поэтому вообще не имеют какой-либо полярности.

Определить же «отрицательный» вывод конденсатора можно при помощи осциллографа. Нужно просто протестировать оба вывода – тот на котором больше наведенных помех (например при прикосновении к корпусу конденсатора или при поднесении высоковольтного кабеля), тот и является «отрицательным» т.е. внешней обкладкой.

Ниже приведены несколько примеров таких измерений.

Конденсатор Jensen Paper Tube (из медной фольги) имеет такое же как у Audio Note обозначение отрицательного вывода в виде черной полосы.
Такой простой тест можно устраивать любым конденсаторам, даже простым советским К73-17.
Данный тест особенно пригодится для любителей ламповой схемотехнике, особенно такая проверка актуальна для конденсаторов находящихся в непосредственной близости к источникам электрических помех, таких как силовые трансформаторы и прохождение силовых токоведущих проводов в непосредственной близости к звуковым конденсаторам.

Полярный конденсатор

Ах, эти пленочные конденсаторы. Многие, вероятно, наслышаны о них.

Исходя из разных диэлектрических свойств пленки, такие конденсаторы, в качестве разделительных в звуковых цепях, ведут себя несколько по-разному, что, так или иначе, сказывается на звуке. Никакие физические/электромеханические свойства диэлектрика мной не исследовались. Основная мысль статьи – провести некую классификацию пленочников и ближе познакомиться с ними.

Ну чтож, продолжим? 🙂

Автор: yooree

Немного конструктива

Роль диэлектрика в таких конденсаторах выполняет полимерная пленка. В качестве электродов может использоваться фольга. Но технология здесь достаточно разнообразная.

Бывает, что пленку не укрывают слоем фольги, а металлизируют (тонким слоем металла) посредством вакуумного напыления. Даже возможен обратный вариант – полимерный порошок напыляют на фольгу. И даже существуют промежуточные варианты, когда в конструкции намотки используется и металлизированная пленка и фольга, когда используется двухслойная металлизация пленки и, возможно, еще какие-то техники.

Читайте также  Шиферный лист

По типу корпуса и/или организации выводных электродов можно провести еще ряд градаций:

– аксиального или радиального типа

– тубулярные или овальные по форме

– индуктивные и неиндуктивные

– боксовые или залитые (компаундом)

Лавсановые (Polyester film capacitor/ Metallized Polyester film capacitor)

1-ая (большая и достаточно распространенная ) группа – конденсаторы с диэлектриком из лавсановой (полиэтилентерефталатной) пленки. Самые доступные из пленочных. Здесь следует различать металлизированный лавсан и неметаллизированный.

Неметаллизированные, как правило, небольшой емкости, небольших размеров. В качестве примеров таковых – отечественные К73-9

Или импортные, — могут выглядеть так:

Конденсаторы на основе металлизированной пленки

Имеют бOльшую емкость в сравнении с емкостями на основе неметаллизированной пленки. Типичный пример отечественного металлизированного лавсанового радиального пленочника — К73-17:

Ближайшие импортные аналоги выглядят так :

Другие импортные серии:

— достаточно популярная серия MKT. Они типично выполнялись боксовыми радиальными. Законодателем “моды” в прошлом веке выступила фирма Siemens. Позже, боксовый тип “подхватили” Wima, AVC, EPCOS и многие другие.

Позже в боксовом корпусе стали выпускать и снабберные (помехоподавляюшие) пленочники, что негативно сказалось на репутации MKT. Укрепилось мнение, что для звука такие “не очень”.

Параллельно выпускались и выпускаются другие серии – тубулярные, наиболее распространенные — MEA или MET или MPE и т.д. Тубуляры чаше бывают желтого цвета (иногда черные или красные) они встречаются или строго цилиндрические, или овальные.

За ними закрепилась репутация более подходящих в качестве разделительных в аудиотракте. Фотопример тубуляров —

— достаточно заметная группа индуктивных лавсановых неметаллизированных. Их особенность в том, что они индуктивные. Иногда их еще называют майларовыми (mylar), майлар – просто разновидность лавсана.

Это прежде всего серия PEI. Их в некоторых интернет-магазинах рунетеа преподносят как полистирольные, но это развод. Выглядят PEI так –

Предельная емкость у темно-зеленых, как правило, не выше 0,22 мкФ. И, по некоторым сведениям, к подобным относятся и TMCF, которые еще могут называться как CL11.

Как вычислить лавсановый конденсатор по названию его серии?

По наличию латинской буквы “E” – что означает “этилентерефталат”. Хотя бывают и исключения, как с MKT. Вероятно, это немецкий вариант.

Плюс еще азиатские стандарты добавляют путаницы, они предпочитают давать сериям другие названия, типа СL. Иногда стандарты дублируют, при этом пишут дублера в скобках.

Где именно использовать конденсаторы с диэлектриком из лавсана – точного совета нет. Правильнее будет сказать — там, где их рекомендуют к использованию. Их часто относят к категории General Purpose – т.е. для общего применения.

Полистирольные (Polystyrene Film Capacitors)

Считается, что полистирольные емкости вносят минимальную окраску и одни из самых стабильных. Проверить это не всегда удается, т.к. надо прежде всего умудриться найти такие конденсаторы. Они не очень распространенные. Еще одна проблема по ним – предельная емкость для этих приборов – типично всего 0,5 мкФ.

Из отечественных более-менее доставабельный К71-7

И еще, по минимальной границе емкости К71-1 тоже “хромает” – выпускают начиная от 1000пФ.

Из импортных (настоящих) полистирольных встречал только серию PSI / PSR, они тоже не самые распространенные, выглядят так –

Предельная емкость еще ниже, до 0,01 мкФ. Но зато минимальная встречается до 68пФ.

Поликарбонатные конденсаторы (Polycarbonate Film Capacitors)

Вероятно, они “вымерли” уже давно. Не видно их и не слышно о них. Из отечественных в истории упоминается о К77-1 с пределами емкостей от 0,001 до 3,9 мкФ. И ходили слухи, что они придают звуку приятную мягкость. Видимо, по аналогии с угольными резисторами. К сожалению, вымерли они из-за активной конкуренции со стороны другого диэлектрика – полифенил-сульфида, производство которого было не таким затратным.

Полифенил-сульфидные конденсаторы (Polyphenylene Sulphide (PPS) capacitors):

Современные заменители поликарбонатных конденсаторов. Редкие и дорогие. Из наиболее известных можно упомянуть серию MU12 американской фирмы Electronic Concepts. Мечта аудиофилов…

Полипропиленовые конденсаторы. (Polypropylene capacitors / Metallized Polypropylene capacitors)

2-ая (большая, но менее распространенная в странах СНГ) группа с диэлектриком из полипропилена. Относительно доступные, могут быть раза в 3-4 дороже лавсановых. Из отечественных еще как-то можно отыскать K78-2 и К78-19 и некоторые другие.

Из импортных выпускаемый спектр очень широк. Начнем с самых ходовых. Для неметаллизированных, к примеру, серия PPN (CBB13), чаще всего бордового или красного цвета.

Для металлизированных — MPP (CBB21, CBB22), бордовые

или темно-синие, иногда,

— Боксовые версии MKP (Wima, Epcos, Evox-Rifa и т.п.) – посолиднее, но репутация слабее из-за корпуса типа box. Опять же, вероятно, потому, что в боксах часто выпускают снабберные пленочники. Пример от Вима –

— тубуляры (цилиндрические или овальные), серий MPA, MPT, MPR и т.п. (CBB20) – хорошая репутация. Выглядят так :

— высоковольтные полипропиленовые серий PPS (CBB81) и им подобные. Неметаллизированные, только фольга и пленка. Номиналы – от 100пФ до 0,47мкФ. Напряжение от 1000 до 3000В. Близкие аналоги отечественных K78-2. Выглядят так –

— снабберные полипропиленовые, типа MKP/X2 (CBBX2), MPX (CBB62X2) и т.п.

Они шумоподавляющие. Ходят слухи, что для звуковых цепей это не лучший вариант. Снабберные легко можно вычислить по обилию значков-сертификатов на корпусе. Выглядеть могут так –

— пусковые полипропиленовые (для двигателей и/или для розжига ламп дневного света)

Насколько они могут быть хороши в звуке – неизвестно. Выглядеть могут так –

— аудиофильские полипропиленовые (фольговые) навороченные. От брендов, типа Solen, Mundorf, Jantzen. Для экстремалов. В качестве примера — Mundorf MCap Supreme 800 VDC 3.3 uF всего за каких-то несчастных 885 руб.

Фторопластовые конденсаторы. (Teflon film capacitors)

Наряду с полистирольными, считаются самыми толерантными к звуку емкостями. Опять же редкие. Из отечественных должны где-то существовать такие, как К72П-6, К72-9, ФТ-3…

А по импортным еще хуже ситуация – наблюдаются только аудиофильские для суперэкстремалов, например TFT V-Cap 3,3 мкФ х 250В за $699,99

Заключение

— конечно, идеальных пленочных конденсаторов не существует, здесь на помощь может прийти “бутербродная” техника. И терпение в опробовании разных типов.

— не все типы одинаково хороши для усилителей на любой элементной базе. Лампы “любят” конденсаторы с одним типом диэлектрика, полупроводникиовые конструкции – с другим. Уместность использования определенного конденсатора может быть обусловлена и внутренним импедансом цепи.

— у высоковольтных полипропиленовых конденсаторов и у полистирольных конденсаторов малой емкости есть перспективы удачно проявить себя в отфильтровке ВЧ в пассивных регуляторах тембра и в тонкомпенсации.

Cтатья содержит только краткие сведения, в помощь тем, кто пожелает расширить свой кругозор могут быть полезны следующие источники в сети:

*Название темы на форуме должно соответствовать виду: Заголовок статьи [обсуждение статьи]

© DiyAudio Team, 2010-2012
Все материалы ресурса защищены законом об авторском праве.
При публичном использовании, цитировании или копировании обязательна ссылка на наш ресурс
с указанием конкретного имени или ника автора материала.

Читайте также  Генератор своими руками

Формулы для вычисления емкости конденсатора

Емкость любого конденсатора можно вычислить, используя выражение:

где – разность потенциалов обкладок конденсатора.

Емкость плоского конденсатора находят как:

где — плотность распределения заряда по поверхности пластины; – диэлектрическая проницаемость вещества, которое находится между пластинами конденсатора; S – площадь каждой (или меньшей) пластины; d – расстояние между пластинами. Формула (3) хорошо соответствует реальности, если расстояние между пластинами много меньше, чем их размеры.

Емкость цилиндрического конденсатора:

где l – высота цилиндров; – радиус внешнего цилиндра; – радиус внутреннего цилиндра. По формуле (5) вычисляют емкость коаксиального кабеля.

Емкость сферического конденсатора вычисляют при помощи выражения:

где – радиусы обкладок конденсатора.

Емкость в Международной системе единиц (СИ) измеряется в фарадах (Ф).

Конструкция электролитического конденсатора

Электролитические конденсаторы устроены, как правило, следующим образом: слой электролита заключается между электродами с металлическим типом проводимости, один из которых покрыт тонким слоем диэлектрика (оксидной плёнкой). За счёт чрезвычайно малой толщины диэлектрика, ёмкость конденсатора достигает значительных величин. Однако, соприкосновение двух проводящих пластин, разделённых тонким диэлектриком не является идеальным, для устранения воздушного зазора, в пространство между пластинами вводят электролит.

По типу наполнения электролитом электролитические конденсаторы можно разделить на: жидкостные, сухие, оксидно-полупроводниковые и оксидно-металлические.

В жидкостных конденсаторах используют жидкий электролит, для увеличения ёмкости анод изготавливают объёмно-пористым, например, путём прессования порошка металла и спекания его при высокой температуре. В сухих конденсаторах применяется вязкий электролит. В этом случае конденсатор, изготавливается из двух лент фольги (оксидированной и неоксидированной), между которыми размещается прокладка из бумаги или ткани, пропитанная электролитом.

В оксидно-полупроводниковых конденсаторах в качестве катода используется проводящий оксид (диоксид марганца).

В оксидно-металлических конденсаторах функции катода выполняет металлическая плёнка оксидного слоя.

Изготовляемые промышленностью алюминиевые электролитические конденсаторы состоят из двух тонких алюминиевых пластин фольги. Между пластинами помещается прокладка — пористая бумага, пропитанная электролитом. Фольга и прокладка сворачивается в рулон и помещается в корпус через который сделаны два электрических вывода. Под химическим действием электролита при приложении электрического напряжения поверхность алюминиевой фольги анода окисляется, — на поверхности фольги образуется тонкий слой диэлектрика — оксида алюминия.

При напряжении обратной полярности процесс регенерации диэлектрического слоя прекращается, он постепенно разрушается, приводя к повышенным значениям токов утечки, что может привести к повреждению электрической схемы, причем отказ конденсатора в сильноточных цепях сопровождается выделением тепла, выделением дыма и газов внутри конденсатора, что может привести к разрушению его корпуса. Поэтому электролитические конденсаторы предназначены для работы лишь в цепях с пульсирующим напряжением одной полярности, либо в цепях с постоянным током.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.

С2 совместно с резистором R3 выполняет функцию термостабилизации. Когда усилитель работает, транзистор нагревается. Это может внести искажения в сигнал. Поэтому, резистор R3 помогает удержать рабочую точку при нагреве. Но когда транзистор холодный и стабилизации не требуется резистор может уменьшить мощность усилителя. Поэтому, в дело вступает С2. Он проводит через себя усиленный сигнал шунтируя резистор, тем самым, не снижая номинальную мощность схемы. Если его емкость будет ниже расчетной, он начнет вносить фазовые искажения в выходной сигнал.

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Эквивалентная схема конденсатора

Эквивалентная схема: поскольку пластины в конденсаторе имеют некоторое сопротивление, и поскольку ни один диэлектрик не является идеальным изолятором, не существует такой вещи, как «идеальный» конденсатор. В реальной жизни конденсатор имеет как последовательное сопротивление, так и параллельное сопротивление (сопротивление утечки), взаимодействующие с его чисто емкостными характеристиками:

Рисунок 2 – Эквивалентная схема конденсатора

К счастью, относительно легко изготовить конденсаторы с очень маленьким последовательным сопротивлением и очень высоким сопротивлением утечки!

Практическое применение на автомобиле

Далеко не все домашние мастера будут тестировать элементную базу материнских плат компьютеров. А вот навыки, как проверить конденсатор трамблера, пригодятся любому автолюбителю. Изучим методику на примере классики ВАЗ.

  • Для проверки необходимо отсоединить кабель, идущий от трамблера до конденсатора. Он обычно соединен с одним контактом прерывателя. Между контактами закрепляем лампу мощностью 35–50 Вт (разумеется, с напряжением 12 вольт). Если при включении зажигания лампа загорелась, конденсатор неисправен, то есть «пробит» (это самая характерная поломка). Если «контролька» не светится — конденсатор исправен.
  • Второй способ можно применять в крайнем случае, если у вас не нашлось лишней лампы. После включения зажигания, необходимо быстро и вскользь коснуться контактами друг к другу. Если ничего не происходит — конденсатор в порядке. При наличии искрения — радиоэлемент «пробит».

Для того, чтобы проверить твердотельные либо электролитические конденсаторы, не обязательно иметь образование радиоинженера. Руководствуясь нашими советами, вы сможете точно определить исправность радиодеталей, и сэкономить средства на покупку новых элементов. Учитывая высокую стоимость именно таких конденсаторов, снижение затрат на ремонт будет ощутимым.