Фотодиоды это

Фотодиоды. Виды и устройство. Работа и характеристики

Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

Устройство и принцип действия

Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

1 – полупроводниковый переход.
2 – положительный полюс.
3 – светочувствительный слой.
4 – отрицательный полюс.

При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Еф». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.

Режимы работы
Фотодиоды способны функционировать в следующих режимах:
  • Режим фотогенератора. Без подключения источника электричества.
  • Режим фотопреобразователя. С подключением внешнего источника питания.

В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт/м 2 .

При функционировании фотодиода в качестве фотопреобразователя , источник напряжения подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.

Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Виды фотодиодов

Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

p i n фотодиод

В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 10 10 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.

Лавинные фотодиоды

Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

1 — омические контакты 2 — антиотражающее покрытие

Лавинные фотодиоды более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

Принцип действия

При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

Характеристики

Свойства таких световых диодов можно описать некоторыми зависимостями.

Вольт-амперная

Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

I — ток M — коэффициент умножения U — напряжение

Световая

Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

Спектральная

Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

Постоянная времени

Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

Темновое сопротивление

Это значение сопротивления диода в темноте.

Инерционность
Факторы, влияющие на эту характеристику:
  • Время диффузии неравновесных носителей заряда.
  • Время прохождения по р-n переходу.
  • Период перезарядки емкости барьера р-n перехода.
Сфера применения

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Светодиоды

Основная функция данных полупроводниковых радиокомпонентов заключается в выработке светового излучения при прохождении электрического тока в прямом направлении. При подаче прямого смещения, как и в обычном диоде, начинаются процессы рекомбинации электронов и дырок. Отличие состоит в том, что в светодиоде этот процесс сопровождается генерацией фотонов, из которых состоит свет.

Для того чтобы полупроводник получил способность к генерации фотонов, он особым образом легируется. В результате материал насыщается носителями заряда, которые возбуждают электромагнитные колебания видимого спектра, которые органами зрения воспринимаются как свечение.

Преимуществом светодиодов является когерентность излучения. Это означает, что элемент вырабатывает электромагнитные колебания только одной длины волны. То есть, светодиодом генерируется свет только одного цвета из тех, что вместе составляют белый. В практической радиоэлектронике наибольшее распространение получили следующие светодиоды:

  1. красные;
  2. жёлтые;
  3. оранжевые;
  4. зелёные.

В осветительных приборах с недавних пор используются многокомпонентные изделия, генерирующие все цвета и смешивающие их в особо плотный белый свет. Эти источники света по светимости аналогичны накальным и люминесцентным лампам, но потребляют значительно меньший объём электроэнергии.

Читайте также  Buone ruote

Отдельный тип светодиодов – радиокомпоненты, вырабатывающие инфракрасное излучение. Они используются в дистанционном управлении электроникой, СКУД, охранных сигнализациях и прочих подобных системах. И хотя эти элементы генерируют невидимые электромагнитные волны, они используют те же физические принципы и выполняются по той же конструкции, поэтому относятся к классу светодиодов.

Типы светодиодов

Сегодня существует два подхода к классификации световых диодов. Во-первых, радиокомпоненты различаются по предназначению. В зависимости от этого они могут быть излучательными и индикаторными. Первые используются в оптоволоконных линиях связи в составе оптических пар. Вторые применяются в устройствах индикации. Осветительные светодиоды относятся, кстати, ко второму типу.

Во-вторых, светодиоды различаются технологиями генерации фотонов и по этому признаку подразделяются на инжекционные и люминофорные. В первых свет вырабатывается напрямую полупроводником при прохождении электрического тока. В люминофорных светодиодах используется принцип вторичной генерации. Эти элементы дают более плотный поток света. Упомянутые выше излучательные светодиоды чаще всего являются именно люминофорными.

Основные характеристики светоизлучающих диодов:

Параметры и характеристики фотодиодов [ править ]

  • чувствительность отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему. ; — токовая чувствительность по световому потоку ; — вольтаическая чувствительность по энергетическому потоку
  • шумы помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

  • вольт-амперная характеристика (ВАХ) зависимость выходного напряжения от входного тока.
  • спектральные характеристики зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
  • световые характеристики зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
  • постоянная времени это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
  • темновое сопротивление сопротивление фотодиода в отсутствие освещения.
  • инерционность

В чём разница?

Одно из основных различий между Светодиодом (LED) и Фотодиодом связано с принципом их работы. Светодиод — это устройство, которое работает по принципу электролюминесценции, то есть люминесценции, возбуждаемой электрическим полем, тогда как работа Фотодиода связана с фотовольтаическим принципом, при котором под воздействии света в веществе возникает напряжение или электрический ток.

При наличии внешнего потенциала на светодиоде он излучает свет. Тогда как в фотодиодах необходимо обеспечить некоторую внешнюю световую энергию, чтобы обеспечить проводимость через устройство. В этой статье вы познакомитесь с некоторыми другими важными различиями между ними.

Содержание

  1. Обзор и основные отличия
  2. Что такое Светодиод?
  3. Что такое Фотодиод?
  4. В чем разница между Светодиодом и Фотодиодом?
  5. Заключение

Что такое Светодиод

LED — это аббревиатура, используемая для обозначения светодиода. По сути, это устройство с прямым смещением, которое излучает свет, когда на его клеммы подается внешний потенциал. Работа светодиода основана на принципе электролюминесценции. При наличии внешнего потенциала происходит рекомбинация электронов и дырок. Из-за этой рекомбинации выделяется некоторая энергия в виде тепла или света. Но в светодиодах высвобождение большей части энергии происходит в виде света. По этой причине эти диоды обладают способностью излучать свет.

Структура светодиода

Теперь возникает вопрос, какой фактор определяет излучение света через светодиод? Этим фактором является полупроводниковый материал, используемый для изготовления диодов. Когда диоды изготавливаются из кремния или германия, рекомбинация производит энергию в виде тепла. В то время как в случае материалов GaAsP (арсенид фосфида галлия) или GaP (Фосфид галлия) большая часть энергии излучается в виде света.

В нашем случае, в прямом смещенном состоянии дырки, присутствующие в «р» стороне, отталкиваются при подключении к ней положительной клеммы батареи. И электроны, присутствующие в стороне «n», отталкиваются при подключении к ней отрицательной клеммы батареи. Эта сила заставляет дырки и электроны рекомбинировать после преодоления потенциального барьера. Рекомбинация в среде происходит посредством исчезновения пар свободных носителей с противоположным зарядом, при этом выделяется энергия.

Свободные электроны присутствуют в зоне проводимости, и эта зона находится выше валентной зоны. Валентная зона содержит дырки. Таким образом, электроны присутствуют в более высоком энергетическом состоянии и, чтобы соединиться с дырками, присутствующими в более низком энергетическом состоянии, они должны выделять некоторую энергию. И такие материалы, как GaAsP или GaP, выделяют эту энергию в виде света. То есть, светодиод излучает свет из-за рекомбинации электронов и дырок, когда ему предоставляется внешний потенциал.

Что такое Фотодиод

Само название «фотодиод» говорит о его работе. По сути, фотодиод — это устройство, работа которого зависит от предоставляемого ему освещения. Фотодиод — это диод с обратным смещением, поскольку он работает в обратном режиме. На рисунке изображен обратносмещенный «p-n-переход», на котором изображен фотодиод:

Структура фотодиода

На приведенном выше рисунке, «p-n-переход» устройства подвергается воздействию света. В обратном смещенном состоянии на «p-n-переходе» существует широкая обедненной область. В обедненной области присутствуют нейтральные атомы, так как эта область обеднена носителями заряда. Даже при отсутствии внешнего освещения на стыке, то за счет обратного приложенного потенциала, неосновные носители будут течь и генерировать обратный ток утечки. Этот ток называется как темновой ток.

Но как только переход снабжается внешним светом, то из-за повышения температуры перехода электрон и дырка, присутствующие в обедненной области, освобождаются. Таким образом, их движение производит электрический ток.

С увеличением интенсивности излучаемого света температура перехода также увеличивается. С увеличением температуры генерация пары электрон-дырка также будет увеличиваться, что в результате увеличивает ток, протекающий через устройство.

В чем разница между Светодиодом и Фотодиодом

  • Светодиод преобразует электрическую энергию, подаваемую на его клеммы, в эквивалентную световую форму. Напротив, фотодиод способен преобразовывать поступающую световую энергию в эквивалентную электрическую форму.
  • Светодиод работает только в прямом смещенном состоянии. В то время как фотодиод-это в диод с обратным смещением.
  • Поскольку светодиоды смещены в прямом направлении, у них нет тока утечки. Тогда как из-за обратного приложенного напряжения на выводах фотодиода протекает обратный ток утечки, который известен как темновой ток.
  • Светодиоды изготавливаются из таких материалов, как арсенид галлия, фосфид арсенида галлия или фосфид галлия. В отличие от этого, фотодиоды изготавливаются из таких материалов, как кремний, арсенид индия и галлия.
  • Светодиод способен излучать свет, но не может его обнаружить. Однако фотодиод может обнаруживать свет, но не может его испускать.
  • Светодиоды в основном применяются в электронных системах индикации, освещении транспортных средств, в системах световой индикации. В то время как фотодиоды применяются в солнечных панелях, в логических схемах и телевидении.
Читайте также  Схема электрической проводки в квартире

Заключение

Из приведенного выше обсуждения мы можем сделать вывод, что хотя светодиод и фотодиод оба являются двумя типами диодов. Но их принципы работы совершенно отличаются друг от друга. Светодиод работает по принципу электролюминесценции, тогда как Фотодиод работает в соответствии с фотовольтаическим принципом. Это является причиной того, что оба находят применение в разных областях.

Применение фотодиодов в оптоэлектронике [ править ]

Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах, поэтому он находит широкое применение во многих областях.

В оптоэлектронных интегральных микросхемах фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств. Почти идеальная гальваническая развязка управляющих цепей при сохранении между ними сильной функциональной связи.

Многоэлементные фотоприемники — это приборы сканистор, мишень кремникона, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие. Они относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Сочетая в себе успехи физики дискретных фотоприемников и новейшие технологические достижения больших интегральных схем, многоэлементные фотоприемники вооружают оптоэлектронику твердотельным «глазом», способным реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ. Для успешного выполнения этих функций необходимо, чтобы число элементарных фоточувствительных ячеек в приборе было достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения). Принцип восприятия образов этими системами сводится к следующему. Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик (ток, заряд, напряжение) пропорционален освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. В конечном счете, на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ. При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования.

Фотодиоды активно используются в оптронах, оптоэлектронныых приборах, в которых имеются источник и приемник излучения с тем или иным видом оптической и электрической связи между ними, конструктивно объединенные и помещенные в один корпус. В электронной схеме оптрон выполняет функцию элемента связи, в одно из звеньев которого информация передается оптически. Это основное назначение оптрона. Если между компонентами оптрона создать электрически обратную связь, то оптрон может стать активным прибором, пригодным для усиления и генерации электрических и оптических сигналов. Принципиальное отличие оптронов как элементов связи заключается в использовании для переноса информации электрически нейтральных фотонов, что обуславливает ряд достоинств оптронов, которые присущи и всем остальным оптоэлектронным приборам в целом. Хотя у оптронов есть, разумеется, и свои недостатки.

В повседневной жизни фотодиоды используются в таких приборах, как устройства чтения компакт-дисков, пультах дистанцианного управления, фотокамерах, различных сенсорных устройствах, использующих данную технологию. Одно из важных применений — в медицинских приборах, в частности — в устройствах для проведения компьютерной томографии.

При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n

Фотодиод может работать в двух режимах:

  • фотогальванический — без внешнего напряжения
  • фотодиодный — с внешним обратным напряжением
  • простота технологии изготовления и структуры
  • сочетание высокой фоточувствительности и быстродействия
  • малое сопротивление базы
  • малая инерционность

Кремниевые фотодиоды справочник

Справочники радиолюбителя

Кремниевые фотодиоды предназначены для использования в качестве приемников инфракрасного излучения в составе оптических датчиков. Их применяют в системах фотоэлектрической автоматики, в устройствах бесконтактного измерения температуры, вычислительной и измерительной техники, программноуправляемого оборудования, работающих на длине волны излучения в пределах 0,5. 1,12 мкм. Собственно приемником фотодиода служит его р-п переход. Под действием излучения ВАХ перехода существенно изменяется.

Фотодиоды могут содержать один фоточувствительный элемент, два (ФД-20-З0К), четыре (ФД-19КК) и более. Фоточувствительное поле фотодиода ФД-246 разделено на 12 (или 64) элементов. Это позволяет снимать выходной сигнал в шестиразрядном коде Грея. Геометрическая форма и размеры элементов также могут быть различными.

В качестве входного окна у фотодиода ФД-К-227 использован иммерсионный конус, у ФД-252 и ФД-252-1 — световод. Входное окно прибора ФД-20 З0К не имеет защитного прозрачного «стекла».

Фотодиоды выпускают в герметичном металлостеклянном корпусе разной конструкции. Плюсовой вывод прибора маркируют либо точкой контрастного цвета на корпусе, либо отрезком цветной ПВХ трубки на проволочном выводе. При отсутствии меток плюсовым является более длинный вывод.

Приборы работают в двух электрических режимах — с внешним смещением и без смещения. В первом из них фотодиод обеспечивает высокую токовую монохроматическую чувствительность, во втором — высокую обнаружительную способность.

Основные размеры, цоколевка и спектральные характеристики чувствительности кремниевых фотодиодов представлены на рис. 1-23. Основные технические характеристики приборов сведены в табл. 1. Прочерки в таблице означают, что у соответствующего прибора прочеркнутые параметры по техническим условиям не нормированы.

Основные параметры фотодиодов, их размерность и определения (по ГОСТ 21934-83)

Область спектральной чувствительности, мкм — интервал длины волны спектральной характеристики, в котором чувствительность приемника излучения превышает 10 % максимального значения.

Длина волны максимума спектральной чувствительности, мкм-длина волны, соответствующая максимуму спектральной характеристики чувствительности.

Рабочее напряжение. В — постоянное напряжение, приложенное к приемнику, при котором обеспечены номинальные значения параметров при длительной работе.

Темповой ток, А — ток, протекающий через приемник излучения при заданном напряжении на нем в отсутствие потока излучения.

Фототок (ток фотосигнала), А — ток, протекающий через приемник при указанном напряжении на нем, обусловленный воздействием потока излучения.

Интегральная чувствительность по току, А/лм — отношение фототока к мощности потока излучения (заданного спектрального состава), вызвавшего появление фототока.

Порог чувствительности, Вт — среднееквадратическое значение первой гармоники действующего на приемник модулированного потока измерения с заданным спектральным распределением, при котором среднее квадратическое значение первой гармоники напряжения (тока) фотосигнала равно среднему квадратиче-скому значению напряжения (тока) шума в заданной полосе на частоте модуляции потока излучения.

Порог чувствительности в единичной частотной полосе, ВгПц (или лмлГГц) -порог чувствительности приемника излучения, приведенный к единичной частотной полосе усилителя.

Коэффициент фотоэлектрической связи, % (или отн. ед.) — отношение значения напряжения (тока) фотосигнала неосвещенного (необлучаемого) фоточувствительного элемента, расположенного рядом с освещенным (облучаемым), к значению напряжения (тока) фотосигнала освещенного (для многоэлементных приемников излучения).

Обнаружительная способность, Вт

‘ — величина, обратная порогу чувствительности.

Плоский угол зрения (2в), град. — угол в нормальной фоточувствительному элементу плоскости между направлениями падения параллельного пучка излучения, при которых напряжение (ток) фотосигнала приемника излучения уменьшается до заданного уровня.

В табл. 1 среди прочих есть параметр «постоянная времени приемника излучения, с», отсутствующий в ГОСТ21934-83. В ведомственной нормали этот параметр определен как время с начала воздействия на фотоприемник прямоугольного импульса оптического излучения до момента, когда напряжение фотосигнала достигнет значения, равного 1 — 1/е от максимального значения (см. книгу Аксененко М. Д., Бараночникова М. Я, Смолина О. В. Микроэлектронные фотоприемные устройства. — М.: Энергоатомиздат, 1984, с. 137).

Читайте также  Мезонин склад

Постоянная времени т определяет значение верхней граничной частоты воспроизведения импульсного сигнала, модулирующего поток излучения: Fв.rp° 1/2πт(если т-в секундах, то частота Fв.rp — в герцах).

Фотодиод ФД-9К (рис. 7,а) выпускают в двух модификациях — с размерами фоточувствительнсто элемента 4,4×4,4 мм или 5,6×5,6 мм. Рабочее поле прибора ФД-20-ЗЗК (рис. 15,а) составлено из двух пар фоточувствительных элементов размерами 0,3×1,4 мм и 0,4×1,4 мм.

Приборы ФД-246 оформлены в унифицированном металлическом корпусе (рис. 20) с числом выводов, соответствующим числу фоточувствительных элементов. Выводы фотодиодов ФД-7К, ФД-9К, ФД-17К, ФД-18К, ФД-24К выполнены в виде плоских лепестков с отверстием для пайки проводников. У фотодиодов ФД-6К, ФД-8К, ФД-10К, ФД-21-КП, ФД-23К, ФД-25К, ФД-26К, ФД-27К, ФД-28КП, ФД-К-155, ФД-К-227, ФД-256 выводы гибкие, многопроволочные.

Фотодиоды ФД-11 (рис. 8) выпускают как с многопроволочными гибкими, так и с однопроволочными выводами. У фотодиодов ФДК-1 и ФДК-1 в (рис. 1) плюсовой вывод свит из двух проволок. Приборы некоторых типов (например, ФД-28КП. рис. 17,а) имеют дополнительный вывод от корпуса-экрана.

На графиках спектральных характеристик заштрихована зона технологического разброса.

Кремниевые фотодиоды способны работать в весьма широких пределах эксплуатационных параметров. Значения этих параметров представлены в табл. 2.

В заключение заметим, что в процессе серийного производства приборов в техническую документацию вносят множество изменений и уточнений, касающихся электрических характеристик и эксплуатационных режимов. Поэтому указанную выше информацию следует использовать для предварительного выбора прибора того или иного типа, после чего необходимо обратиться к техническим условиям на него.

1. Аксененко М. Д., Бараночников М. Л. Приемники оптического излучения. Справочник. — М.: Радио и связь, 1987.
2. Аксененко М, Д., Бараночников М. Л., Смолин О. В. Микроэлектронные фотоприемные устройства — М.: Энергоатомиздат. 1984.
3. ГОСТ 17772-79. Приемники излучения и устройства приемные полупроводниковые фотоэлектрические.

Материал подготовил Л. ЛОМАКИН.
Радио, 19998 год, №2

Устройство слежения за движущимся источником света

Сегодня я решил написать об одном интересном проекте, которым занимался в свободное от учебы время.

Суть устройства проста — есть матрица фотодиодов (в данном случае 4, но можно и больше) которая регистрирует свет от какого-то источника, который может перемещаться. Естественно, количество света, падающее на каждый фотодиод в отдельности различно.

Устройство должно определять расположение в пространстве источника света, который перемещается.Это основная цель. То есть необходимо программно решать задачу многомерной корреляции между вектором интенсивностей и вектором местоположения источника света.

Общая схема показана на рисунке выше. В нашем случае всего 4 фотодиода. Сигнал с фотодиодов усиливается и поступает в микроконтроллер ATMega16. Микроконтроллер формирует пакет с данными и отправляет его с частотой 1 Гц по USART(COM порт). Со стороны компьютера работает программа, написанная на Lazarus (FreePascal), которая считывает с порта данные, и проводит анализ с помощью свободной нейросетевой библиотеки, затем выдает результат о местоположении источника света.

Это было краткое описание, а теперь детали.

1) Подключение фотодиодов

Здесь приведена простая схема подключения фотодиода к операционному усилителю, схема конвертера малого тока в напряжение, можно найти в любой книге по схемотехнике.

Падающий свет вызывает фототок, схема линейна (до насыщения), в отличии от схемы со смещением. Ток почти не течет в инвертирующий вход, и поэтому напряжение на выходе определяется как U=I*R1.

Очень хорошая статья про фотодиоды и усилители написана сотрудником Texas Instruments Philip C. D. HOBBS«Усилители для фотодиодов на операционных усилителях». Рекомендую всем заинтересованным.

Мной использовались высокоскоростные PIN фотодиоды, BPW34. У них не очень большой угол обзора — что было под рукой, то и использовал. Здесь подойдут почти любые фотодиоды, дело вкуса.

Красной строки требует операционный усилитель AD820. Усилитель на полевых транзисторах (FET) обладает преимуществом перед биполярными низким током утечки, поэтому в схемах-конвертерах ток-напряжение это очень важно. Также усилитель имеет Rail-to-Rail выход, то есть размах выходного напряжение может приближаться очень близко в шинам питания.
Рекомендую использовать после выхода усилителя ФНЧ (фильтр низких частот), и выбрать нужную частоту среза, чтобы было меньше шума.

2) Микроконтроллер ATMEGA16

Как я уже писал выше микроконтроллер нужен для того, чтобы оцифровывать сигналы и передавать их в порт ПК.
Здесь используется древнейший MAX232ACPE конвертер для COM порта. Сейчас я пользуюсь контроллерами с аппаратным USB, но год назад, мне схема с MAX232 казалась ну очень крутой, и я сильно радовался, когда, наконец, разобрался с ней.
Тем, у кого нет платы с COM портами придется либо собрать самому на FT232RL или купить конвертер USB-USART, которых сейчас навалом в интернетах.

Первым делом нужно организовать стабильное питание для микроконтроллера (МК). По питанию нужно всегда ставить как можно ближе к ножкам МК керамический конденсатор емкостью 0,1 uF. На рисунке между VCC и GND.

Затем нужно позаботится о тактовом сигнале.

Здесь стоит кварцевый резонатор на 8MHz (поверьте, когда я начинал, тоже думал что это так мало). Для увеличения стабильности ставят как показано на схеме пикофарадные конденсаторы. Для каждой частоты нужен свой номинал, подробности нужно смотреть в даташите (datasheet), официальном паспорте-документации на каждую ИС (интегральную схему).

Для того, чтобы МК работал без случайных сбросов, необходимо подключить через подтягивающий резистор Vcc к RESET.

Аналоговые входы PA0..7 являются портами, куда мы подаем сигналы с усилителей.
В качестве опорного напряжения для АЦП возьмем Vcc, вот так совсем не хитро.

Порты RX, TX служат для отправки и получения данных.
TTL логика и логика RS232 сильно различаются, и не могут работать напрямую, поэтому мы используем конвертер, схема подключения показана слева. Все конденсаторы, приведенные в схеме подключения конвертера керамические, и имеют номинал 0.1 uF.

3) Среда разработки и используемые библиотеки

Этот проект я делал на Lazarus IDE, компилятор FreePascal, в процессе написания мной было использовано несколько компонентов и библиотек.

  • Библиотека для работы с COM-портом CportLib
  • Известная библиотека FANN

Для работы с нейросетями я выбрал свободную библиотеку FANN. Думаю, что большинство знают как работают нейросетевые алгоритмы, но на всякий случай повторюсь на моем примере.

Здесь нейросеть должна вначале обучиться с учителем.

Смысл обучения состоит в том, что сеть должна подстраивать коэффициенты матриц слоев таким образом, чтобы минимизировать разницу между выходным вектором и обучающим вектором.

Каждая задача уникальна в каком-то смысле, и поэтому нет теории, которая бы говорила какого количества нейронов достаточно, чтобы решиться задачу, какую передаточную функцию следует использовать и так далее.

На этом все,
в следующий раз, как найду время — напишу продолжение в котором будут освящены такие части как:

  • Получение данных от МК
  • Обучение нейросети
  • Анализ данных с помощью нейросети

Следующая часть будет полностью программной.

64-х (8×8, 64×1) элементные матрицы ФД

Конструкция: Монолитный флип-чип, индивидуальная адресация, размер одиночного элемента 250×250 мкм (матрица 8×8), 220×20 мкм (линейка 64×1), 20×20 мкм (линейка 64×8). Используются те же фотоприемные структуры, что и в иммерсионных фотодиодах с линзой из Si (cерии Sr/Su/Cy).