Краткий курс: как проверить полевой транзистор мультиметром на исправность

Краткий курс: как проверить полевой транзистор мультиметром на исправность

В технике и радиолюбительской практике часто применяются полевые транзисторы. Такие устройства отличаются от обычных, биполярных, транзисторов тем, что в них управление выходным сигналом осуществляется управляющим электрическим полем. Особенно часто используются полевые транзисторы с изолированным затвором.

Англоязычное обозначение таких транзисторов – MOSFET, что означает «управляемый полем металло-оксидный полупроводниковый транзистор». В отечественной литературе эти приборы часто называют МДП или МОП транзисторами. В зависимости от технологии изготовления такие транзисторы могут быть n- или p-канальными.

Структура полевого MOSFET транзистора.

Для создания МОП-транзистора берется подложка, выполненная из p-полупроводника, где основными носителями заряда являются положительные заряды, так называемые дырки. На рисунке вы видите, что вокруг ядра атома кремния вращаются электроны, обозначенные белыми шариками.

Когда электрон покидает атом, в этом месте образуется «дырка» и атом приобретает положительный заряд, то есть становиться положительным ионом. Дырки на модели обозначены, как зеленые шарики.

На p-подложке создаются две высоколегированные n-области, то есть области с большим количеством свободных электронов. На рисунке эти свободные электроны обозначены красными шариками.

Свободные электроны свободно перемещаются по n-области. Именно они впоследствии и будут участвовать в создании тока через МДП-тназистор.

Пространство между двумя n-областями, называемое каналом покрывается диэлектриком, обычно это диоксид кремния.

Над диэлектрическим слоем располагают металлический слой. N-области и металлический слой соединяют с выводами будущего транзистора.

Выводы транзистора называются исток, затвор и сток.

Ток в МОП-транзисторе течет от истока через канал к стоку. Для управления этим током служит изолированный затвор.

Однако если подключить напряжение между истоком и стоком, при отсутствии напряжения на затворе ток через транзистор не потечет, потому что на его пути будет барьер из p-полупроводника.

Если подать на затвор положительное напряжение, относительно истока, то возникающее электрическое поле будет к области под затвором притягивать электроны и выталкивать дырки.

По достижению определенной концентрации электронов под затвором, между истоком и стоком создается тонкий n-канал, по которому потечет ток от истока к стоку.

Следует сказать, что ток через транзистор можно увеличить, если подать больший потенциал напряжения на затвор. При этом канал становиться шире, что приводит к увеличению тока между истоком и стоком.

МДП-транзистор с каналом p-типа имеет аналогичную структуру, однако подложка в таком транзисторе выполнена из полупроводника n-типа, а области истока и стока из высоколегированного полупроводника p-типа.

В таком полевом транзисторе основными носителями заряда являются положительные ионы (дырки). Для того, что бы открыть канал в полевом транзисторе с каналом p-типа необходимо на затвор подать отрицательный потенциал.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

На что нужно обратить внимание

Открыв PDF-даташит, в первую очередь надо выяснить: тип транзистора (MOSFET или JFET), полярность, тип корпуса, расположение выводов (цоколевку).

Из числовых параметров это, прежде всего предельные характеристики, такие как Pd — максимальная рассеиваемая мощность, Vds — максимальное напряжение сток-исток, Vgs — максимальное напряжение затвор-исток, Id — максимальный ток стока. У подбираемого транзистора эти параметры должны быть не меньше чем у исходного транзистора.

Для MOSFET-транзистора важным параметром является сопротивление сток-исток открытого транзистора (Rds). От значения Rds зависит мощность, выделяемая на транзисторе. Чем меньше значение Rds, тем меньше транзистор будет нагреваться.

Однако необходимо помнить, что чем больше Id и меньше Rds, тем больше ёмкость затвора у MOSFET-транзистора. Это приводит к тому, что требуется большая мощность для управления этим затвором. А если схема не обеспечит нужную мощность, то возрастут динамические потери из-за замедленной скорости переключения транзистора и, как итог, MOSFET будет больше нагреваться. Поэтому необходимо проверить температурный режим (нагрев) транзистора после включения устройства. Если транзистор сильно нагревается, то дело может быть как в самом транзисторе, так и в элементах его обвязки.

Кратко о IGBT

Модуль IGBT также является полностью управляемым коммутатором с тремя контактами (затвор, коллектор и эмиттер). Его управляющий сигнал подается между затвором и эмиттером и нагрузкой между коллектором и эмиттером.

IGBT сочетает в себе простые характеристики управления затвором, как в транзисторе MOSFET, с сильноточным характером биполярного транзистора с низким напряжением насыщения. Это достигается с помощью изолированного полевого транзистора для управляющего входа и биполярного силового транзистора в качестве сильноточного ключа.

Модуль IGBT специально разработан для быстрого включения и выключения. Фактически частота повторения импульсов достигает УЗ диапазона. Эта уникальная способность делает IGBT часто используемыми в усилителях класса D для синтеза сложных сигналов с широтно-импульсной модуляцией и фильтрами нижних частот. Они также используются для генерации импульсов большой мощности в таких областях, как физика элементарных частиц и плазма, а также играют важную роль в современных устройствах — электромобили, электровелосипеды, поезда, холодильники с регулируемой скоростью вращения компрессора, кондиционеры и многое другое.

Общий алгоритм проверки

Как проверить транзистор мультиметром? В общем и целом алгоритм выглядит так:

  1. подключите щупы мультиметра стандартным образом — черный к порту COM, красный — к порту, возле которого стоят буквы Ω, V и , возможно другие (зависит от модели);
  2. установите прибор в режим максимального сопротивления — как правило, это 2000 Ом, либо в режим «прозвонка»;
  3. удостоверьтесь, что батарея заряжена, изоляция проводов щупов не нарушена, а мультиметр исправен. Для этого в режиме прозвонки нужно соединить между собой контакты обоих щупов — писк мультиметра и единица на экране, означающая сопротивление, которое выше предела измерения, будут означать, что прибор работает корректно.

Дальнейшие действия по проверке будут зависеть от того, какого типа элемент требуется проверить. В основном в электронике применяются полупроводниковые элементы двух видов — биполярный и полевой.

Особенности режима усиления

Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:

  1. Положительный сигнал транзистор переводит в проводящий режим.
  2. Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.

Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:

  1. Положительный сигнал переводит транзистор «Выкл».
  2. Отрицательный включает транзистор в режим «Вкл».

Драйвера

Для того чтобы быстро перезарядить Gate необходимо приложить, в зависимости от полевика, различное усилие. В интернете есть формулы для расчета токов, протекающих через драйвер. Я же хочу показать какие есть схемы управления полевиками. Конкретно нас интересует ключевой режим работы MOSFET-а.

Напрямую от контроллера

Не самый лучший вариант. Исключение составляют контроллеры со встроенным драйвером. RG резистор ограничивает ток через контроллер и уменьшает пульсации. У полевиков тоже есть своя индуктивность, она небольшая, но при быстром нарастании/спаде возникают колебания как в LC контуре. В моих краях найти контроллер со встроенным драйвером либо сложно либо дорого, поэтому приходится колхозить на универсальном ШИМ контроллере, под названием TL494.

Еще одна заметка по поводу резистора RG, когда требуется управлять большими токами и приходится ставить по 2-3+ транзистора, то данный резистор необходимо ставить перед каждым полевиком:

Особо крутые контроллеры, как на материнках, работающие на частотах 0.5-2МГц не требуют данного резистора и имеют отдельный выход для каждого полевика. Каждый полевик там представляет собой отдельную фазу с отдельным дросселем. Такие частоты выбраны специально для уменьшения габаритов всей схемы. Чем выше частота – тем меньше индуктивность нужна. В общих чертах.

Производители контроллеров полевиков рекомендуют сопротивление RG 4.7 Ом. Даже видел гдето видео ролик с презентацией сравнения потерь при различных резисторах. На практике же RG может доходить до 200 Ом, т.к. драйвера разные – токи которые они могут выдержать тоже разные. И частоты тоже разные. Короче глупо говорить что ставьте везде 4.7 Ома и будет счастье. Поэтому данный резистор должен подбираться индивидуально под способности драйвера и емкость Gate полевика (в даташитах этот параметр обозначается как Ciss – Input Capacitance).

Двухтактный биполярный драйвер

Одна из самых эффективных схем управления:

В идеале управляющие транзисторы надо распологать как можно ближе к MOSFET-у, для уменьшения пути протекания тока. Важно добавить шунтирующий конденсатор между VGate и землей (в схеме не указан).

Хорошо если N-канальный полевик Source-ом подключен к общей шине – земле – что и контроллер. Такое бывает в Step-Up конвертерах, однако ими мир не ограничивается. В Step-Down конвертерах полевик подключается Drain-ом напрямую к +, а Source идет дальше на дроссель. Если вы (не дай бог как я, по своей неопытности, когда в первой пришлось собрать понижающий преобразователь) попробуете заставить работать такую схему:

То обнаружите что полевик уже дымиться и припой капает коту на хвост расплавился. Как я сказал в начале статьи, N канальный полевик открывается полностью если на Gate подать + относительно Source. Но в данном случае получается когда мы подаем + на Gate, он начинает открываться и Source поднимается к + тоже! В итоге полевик не открыт и не закрыт. Висит посередине и дико греется. Но тут существует простое решение, Bootstrap-драйвер:

Схема немного усложнилась. Как видите силовым полевиком (справа) управляет по прежднему двухтактный биполярный драйвер. Однако он заведен относительно Source полевика. Левый полевой транзистор – маломощный, используется для сдвига уровня. Сигнал подается инвертированный. Резистор Pull-Down (подтягивающий) лучше поставить, в случае чего чтобы схема не “летала в воздухе”. Вот как оно работает: изначально конденсатор CBOOT заряжается через диод DBOOT управляющим напряжением, т.к. транзистор закрыт, на выводе Source земля (после дросселя L идет нагрузка которая как бы “заземляет” на время выключения полевика вывод Source). Полевик сдвига уровня наоборот (слева), открыт, чтобы силовой полевик был закрыт. Собственно в этом и заключается инверсия. Когда полевик сдвига уровня закрывается через резистор RLEVEL подается положительное напряжение на драйвер, а далее драйвер усиливает сигнал и подает + на Gate силового транзистора. Он начинает открываться и… и открывается полностью! Так как конденсатор CBOOT заряжен и привязан к Source силового полевика, то когда Source выравнялся по напряжению с напряжением притания, то CBOOT поднялся еще выше и оттуда, сверху, рулит через драйвер полевиком! Получается напряжение в момент открытия силового полевика относительно земли таково: UCBOOT+UPOWER. А диод не позволяет этому напряжению уходить обратно. Поэтому важно рассчитать какая разница напряжений у Вас получиться и использовать диод с запасом на данное напряжение. Когда триумф нашего CBOOT подходит к концу левый полевик открывается, на драйвере напряжение падает и одновременно с этим Source силового полевика также возвращается на “землю”. Я бы рекомендовал добавить небольшой резистор после Drain управляющего полевика, чтобы, когда драйвер открыт и “земля” драйвера выше реальной земли, не убить маломощный управляющий полевик. На своей практике я использовал 12 Ом резистор. Такая схема, с КПД 85% управляла понижающим конвертером на 300 ватт…. только недолго, нагрузка на выходе в виде резисторов плавилась на глазах 🙂 Еще большего КПД можно достичь применяя синхронный выпрямитель, это когда вместо диода снизу ставится тоже полевой транзистор и открывается, когда верхний уже закрыт. Т.к. схема синхронизации двух полевиков заметно усложняется, то советую использовать спецальные синхронные драйвера. Там уже все задержки между открытием и закрытием есть, чтобы исключить протекание сквозных токов.

Схема ускоренного выключения на PNP

Самая простая и, возможно, самая популярная схема на одном PNP транзисторе:

В данном случае подразумевается что контроллер достаточно мощный, чтобы быстро зарядить полевик, но например, как у TL494, выход состоит всего лишь из одного npn транзистора. Обьеденив два имеющихся выхода TL494 и подцепив коллектором на + питания, эмитторы идут на вход этого полудрайвера. Главное эммитеры подтянуть на землю резистором. В случае напрямую выход TL494 подключить к полевику, то он будет очень долго закрываться, если подтягивающий резистор на килоом и больше. Если сдеать его на 100-200 ом, то тогда возрастает нагрузка на выходной каскад TL-ки, что тоже не хорошо:

В таком случае и применяется закрывающий драйвер:

В таком случае подтягивающий резистор делается на несколько килоом а RG рассчитывается также как раньше. При подаче положительного импульса, он проходит напрямую через диод D_ON и заряжает Gate полевика. Когда выходной каскад на TL-ке закрывается, то через подтягивающий резистор PULL_DOWN открывается Q_OFF и мгновенно разряжает через себя заряд Gate, что и приводит к моментальному закрытию полевика!

Почему N-канальный полевик лучше P-канального?

Возможно вы уже заметили что на всех схемах фигурирует N-канальный MOSFET. Этому есть несколько причин:

  • У N-канала при одинаковой серии меньшее сопротивление открытого канала.
  • N-канальные дешевле. 20A N-ch 1$ условно, то 20A P-ch 1.5$
  • В парных сборках N-ch и P-ch (в SO8 корпусе например) P-ch обладает как бОльшим сопротивлением так и меньшим максимальным током.
  • Сложно достать мощные P-ch полевики в какойнить деревне 🙂
  • Драйвер на рассыпухе для High-side N-ch может выйти дешевле чем разность стоимости P-ch – N-ch полевиков.

Так что если уже запаслись N-канальными полевиками, то вперед собирать к ним драйвера! Это не сложнее чем купить/найти P-ch.