Переделка компьютерного блока питания в лабораторный на ШИМ UC3843

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843

Дата: 03.07.2018 // 0 Комментариев

Продолжая серию статей о самодельных лабораторных блоках питания, нельзя пройти мимо компьютерных блоков в основе которых лежит ШИМ контроллер серии UC38хх. В большинстве современных фирменных блоков ПК используется именно эта микросхема, что в перспективе позволяет своими руками создавать надежные и мощные источники питания. Сегодня у нас переделка компьютерного блока питания в лабораторный на ШИМ UC3843, подопытным блоком станет INWIN POWER MAN IP-S350Q2-0.

Ремонт Chieftec CTG-750C и подобных. замена CM03AX

FELiS » 16 фев 2017, 16:07

В блоках питания различных производителях построенных на шим cm6805 зачастую используется микросхема CM03AX для снижения энергопотребления в режиме простоя. При выходе её из строя блок не запускается даже при живой шим. Данная микросхема содержит 3 полевика и с легкостью земеняется на три перемычки на ножки 4-3, 5-8, 6-7. В блоке питания Chieftec CTG-750C их можно установить на площадки j53, j54, j55. Микросхему необходимо удалить.

Для блокировки защиты супервайзера замкнуть пины 2 и 3 микросхемы st9s313 (аналог ps113). На сколько я помню пины те же что и у ps229

Re: Ремонт Chieftec CTG-750C и подобных. замена CM03AX

Death_Morozz » 17 фев 2017, 18:07

тоже так может заболеть?

ИМХО: Chieftec какое то говно стал делать.

Re: Ремонт Chieftec CTG-750C и подобных. замена CM03AX

FELiS » 20 фев 2017, 11:49

Re: Ремонт Chieftec CTG-750C и подобных. замена CM03AX

FELiS » 08 май 2017, 22:05

Re: Ремонт Chieftec CTG-750C и подобных. замена CM03AX

FELiS » 09 июл 2017, 22:58

все отремонтированные блоки работают, полет нормальный. Chieftec CFT-750-14CS был неисправен из за периодического обрыва пленочного разделительного конденсатора отсекающего постоянную составляющую сигнала на ТГР. Микросхема при этом все равно заменена на перемычки, но тем не менее бп работает. Обрыв выявлен с помощью замены силовых полевиков на емкостный эквивалент и локального прогрева с мониторингом сигналов на осциллографе.

Так же во время экспериментов с блоком в магазине радиодеталей была обнаружена перемаркированная микросхема cm6800t оказавшаяся на самом деле ml4800 судя по реверсным расчетам длительности нарастания пилообразного сигнала и мертвого времени. cm6800t в отличие от аналогов делит частоту осциллятора на 4. Остальные мс работают на частоте осциллятора. При установке микросхем cm6800g ml4800 fan4800 вместо cm6800t частота преобразования растет в 4 раза и необходимо пересчитать RC цепочку и дедтайм, будте внимательны!.

Недавно была обнаружена мс cm6800u с частотами fpwm 137kHz и fpfc 67kHz, полных аналогов она не имеет, но можно попробовать поднять fpfc.

Re: Ремонт Chieftec CTG-750C и подобных. замена CM03AX

YERMAKOV11141976 » 28 сен 2017, 12:05

Re: Ремонт Chieftec CTG-750C и подобных. замена CM03AX

YERMAKOV11141976 » 28 сен 2017, 12:37

Re: Ремонт Chieftec CTG-750C и подобных. замена CM03AX

FELiS » 06 окт 2017, 02:48

Дежурка есть хоть? 15 вольт приходит на VCC шим контроллера? Какое напряжение на сетевом электролите? Бывает что VCC отключается из за сбоя во вторичке с помощью супервизора, там обычно стоит ps223 или подобный. Для принудительного пуска перемыкается 2-3 пин супервизора. Если есть VCC на шимке должна пойти генерация на транзистор корректора мощности, на сетевой банке должно будет подняться напряжение с 310 до 380 вольт, потом только запустятся ключи двухтранзисторного прямоходового преобразователя. cm03ax лучше заменить на перемычки, часто они летят. Иногда блок запускается после прогрева оной феном. Один блок ради прикола оставил с прогретой микросхемой cm03ax и замененной шим, отказал через месяц, после апгрейда вроде работает, хозяин еще не забрал.

Как переделать cm03ax на перемычки смотрите в 1ом посте.

Признаки неисправности, их устранение

Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.

Остановка сразу после запуска

Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе.

Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.

Импульсный модулятор не стартует

Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме.

Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.

Проблемы с напряжением

Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера.

Поиск неисправности: визуальное обследование схемы; проверка уровней управляющих и выходных напряжений и сверка их значений с даташит. Если входные параметры в норме, а выход не соответствует номинальному значению – замена ШИМ контроллера.

Отключение блока питания защитой

При запуске широтно-импульсного модулятора, блок питания отключается защитой. При проверке ключевых транзисторов короткое замыкание не обнаруживается. Такие симптомы могут свидетельствовать о неисправности ШИМ контроллера или драйвера ключей.

В этом случае нужно произвести замер сопротивлений между затвором и истоком ключей в каждой фазе. Заниженное значение сопротивления может указывать на неисправность драйвера. При необходимости делается замена драйверов.

В таком виде коронавирус переносят примерно 80% заболевших.

1 день — человек может чувствовать слабость, озноб, быструю утомляемость, сонливость или, наоборот, испытывать проблемы со сном.

Менее часто уже в первый день развивается высокая температура, начинается першение в горле и сухой кашель, мышечная и головная боль. Иногда может проявляться расстройство желудочно-кишечного тракта (ЖКТ) в виде диареи, рвоты, рези в животе, тошноты.

2-3 день — именно тогда, как правило, начинает развиваться кашель. Также появляется другой распространённый симптом — потеря обоняния и (или) вкуса. Продолжаются симптомы расстройства ЖКТ, если они были. Также продолжает держаться высокая температура, что, вкупе с потерей обоняния, уже может вызывать подозрение о коронавирусе.

4-5 день — симптомы продолжают развиваться, что практически убирает вероятность обычной ОРВИ.

6-14 день — «закат болезни». Симптомы ослабляются и исчезают. Относительно долго могут держаться утомляемость, заложенность носа, покашливание, отсутствие вкуса и запаха, но в итоге все они исчезают и приходит полное выздоровление.

Схема контроллера литий-ионного аккумулятора

Если расковырять любой аккумулятор от сотового телефона, то можно обнаружить, что к выводам ячейки аккумулятора припаяна небольшая печатная плата. Это так называемая схема защиты, или Protection IC.

Из-за своих особенностей литиевые аккумуляторы требуют постоянного контроля. Давайте разберёмся более детально, как устроена схема защиты, и из каких элементов она состоит.

Читайте также  Расстояние от столешницы до шкафа

Рядовая схема контроллера заряда литиевого аккумулятора представляет собой небольшую плату, на которой смонтирована электронная схема из SMD компонентов. Схема контроллера 1 ячейки («банки») на 3,7V, как правило, состоит из двух микросхем. Одна микросхема управляющая, а другая исполнительная – сборка двух MOSFET-транзисторов.

На фото показана плата контроллера заряда от аккумулятора на 3,7V.

Микросхема с маркировкой DW01-P в небольшом корпусе – это по сути «мозг» контроллера. Вот типовая схема включения данной микросхемы. На схеме G1 — ячейка литий-ионного или полимерного аккумулятора. FET1, FET2 — это MOSFET-транзисторы.

Цоколёвка, внешний вид и назначение выводов микросхемы DW01-P.

Транзисторы MOSFET не входят в состав микросхемы DW01-P и выполнены в виде отдельной микросхемы-сборки из 2 MOSFET транзисторов N-типа. Обычно используется сборка с маркировкой 8205, а корпус может быть как 6-ти выводной (SOT-23-6), так и 8-ми выводной (TSSOP-8). Сборка может маркироваться как TXY8205A, SSF8205, S8205A и т.д. Также можно встретить сборки с маркировкой 8814 и аналогичные.

Вот цоколёвка и состав микросхемы S8205A в корпусе TSSOP-8.

Два полевых транзистора используются для того, чтобы раздельно контролировать разряд и заряд ячейки аккумулятора. Для удобства их изготавливают в одном корпусе.

Тот транзистор (FET1), что подключен к выводу OD (Overdischarge) микросхемы DW01-P, контролирует разряд аккумулятора – подключает/отключает нагрузку. А тот (FET2), что подключен к выводу OC (Overcharge) – подключает/отключает источник питания (зарядное устройство). Таким образом, открывая или закрывая соответствующий транзистор, можно, например, отключать нагрузку (потребитель) или останавливать зарядку ячейки аккумулятора.

Давайте разберёмся в логике работы микросхемы управления и всей схемы защиты вцелом.

Защита от перезаряда (Overcharge Protection).

Как известно, перезаряд литиевого аккумулятора свыше 4,2 – 4,3V чреват перегревом и даже взрывом.

Если напряжение на ячейке достигнет 4,2 – 4,3V (Overcharge Protection VoltageVOCP), то микросхема управления закрывает транзистор FET2, тем самым препятствуя дальнейшему заряду аккумулятора. Аккумулятор будет отключен от источника питания до тех пор, пока напряжение на элементе не снизится ниже 4 – 4,1V (Overcharge Release VoltageVOCR) из-за саморазряда. Это только в том случае, если к аккумулятору не подключена нагрузка, например он вынут из сотового телефона.

Если же аккумулятор подключен к нагрузке, то транзистор FET2 вновь открывается, когда напряжение на ячейке упадёт ниже 4,2V.

Защита от переразряда (Overdischarge Protection).

Если напряжение на аккумуляторе падает ниже 2,3 – 2,5V (Overdischarge Protection VoltageVODP), то контроллер выключает MOSFET-транзистор разряда FET1 – он подключен к выводу DO.

Далее микросхема управления DW01-P перейдёт в режим сна (Power Down) и потребляет ток всего 0,1 мкА. (при напряжении питания 2V).

Тут есть весьма интересное условие . Пока напряжение на ячейке аккумулятора не превысит 2,9 – 3,1V (Overdischarge Release VoltageVODR), нагрузка будет полностью отключена. На клеммах контроллера будет 0V. Те, кто мало знаком с логикой работы защитной схемы могут принять такое положение дел за «смерть» аккумулятора. Вот лишь маленький пример.

Миниатюрный Li-polymer аккумулятор 3,7V от MP3-плеера. Состав: управляющий контроллер — G2NK (серия S-8261), сборка полевых транзисторов — KC3J1.

Аккумулятор разрядился ниже 2,5V. Схема контроля отключила его от нагрузки. На выходе контроллера 0V.

При этом если замерить напряжение на ячейке аккумулятора, то после отключения нагрузки оно чуть подросло и достигло уровня 2,7V.

Чтобы контроллер вновь подключил аккумулятор к «внешнему миру», то есть к нагрузке, напряжение на ячейке аккумулятора должно быть 2,9 – 3,1V (VODR).

Тут возникает весьма резонный вопрос.

По схеме видно, что выводы Стока (Drain) транзисторов FET1, FET2 соединены вместе и никуда не подключаются. Как же течёт ток по такой цепи, когда срабатывает защита от переразряда? Как нам снова подзарядить «банку» аккумулятора, чтобы контроллер опять включил транзистор разряда — FET1?

Дело в том, что внутри полевых транзисторов есть так называемые паразитные диоды – они являются результатом технологического процесса изготовления MOSFET-транзисторов. Вот именно через такой паразитный (внутренний) диод транзистора FET1 и будет течь ток заряда, так как он будет включен в прямом направлении.

Если порыться в даташитах на микросхемы защиты Li-ion/polymer (в том числе DW01-P, G2NK), то можно узнать, что после срабатывания защиты от глубокого разряда, действует схема обнаружения заряда — Charger Detection. То есть при подключении зарядного устройства схема определит, что зарядник подключен и разрешит процесс заряда.

Зарядка до уровня 3,1V после глубокого разряда литиевой ячейки может занять весьма длительное время — несколько часов.

Чтобы восстановить литий-ионный/полимерный аккумулятор можно использовать специальные приборы, например, универсальное зарядное устройство Turnigy Accucell 6. О том, как это сделать, я уже рассказывал здесь.

Именно этим методом мне удалось восстановить Li-polymer 3,7V аккумулятор от MP3-плеера. Зарядка от 2,7V до 4,2V заняла 554 минуты и 52 секунды, а это более 9 часов ! Вот столько может длиться «восстановительная» зарядка.

Кроме всего прочего, в функционал микросхем защиты литиевых акумуляторов входит защита от перегрузки по току (Overcurrent Protection) и короткого замыкания. Защита от токовой перегрузки срабатывает в случае резкого падения напряжения на определённую величину. После этого микросхема ограничивает ток нагрузки. При коротком замыкании (КЗ) в нагрузке контроллер полностью отключает её до тех пор, пока замыкание не будет устранено.

Схемы включения TL431

Рабочие характеристики стабилизатора задаются двумя резисторами. Варианты использования данной микросхемы могут быть различные, но максимальное распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Часто применяется в стабилизаторах тока в зарядных USB устройствах, промышленные блоки питания, принтеров и другой бытовой техники.

TL431 есть практически в любом блоке питания ATX от компьютера, позаимствовать можно из него. Силовые элементы с радиаторами, диодными мостами тоже там есть.

На данной микросхеме реализовано множество схем зарядных устройств для литиевых аккумуляторов. Выпускаются радиоконструкторы для самостоятельной сборки своими руками. Количество вариантов применение очень большое, хорошие схемы можно найти на зарубежных сайтах.

Входное напряжение смещения и гистерезис

Для большинства схем построенных на компараторах, величина гистерезиса является разностью напряжений входного сигнала, при котором выход компаратора либо полностью включен или полностью выключен. Гистерезис в компараторах, как правило, нежелателен, но он может потребоваться, когда необходимо уменьшить чувствительность к шуму или при медленном изменении входного сигнала.

Внешний гистерезис использует положительную обратную связь (ПОС) с выхода на неинвертирующий вход компаратора. В результате полученный триггер Шмитта обеспечивает дополнительную помехоустойчивость и более чистый выходной сигнал.

Эффект от использования гистерезиса в том, что при постепенном изменении входного напряжения, а опорное напряжение будет быстро изменяться в противоположном направлении. Это обеспечивает чистое переключение выхода компаратора.

Механический аналог гистерезиса может быть обнаружен в разнообразных тумблерах. Как только рукоятка тумблера перемещается мимо центральной точки, пружина в тумблере переводит контакты реле в гарантированное положение (открытое или закрытое).

Читайте также  Пресс из перевернутого домкрата

Гистерезис является неотъемлемой частью большинства компараторов составляющая всего несколько милливольт и он обычно влияет только на схемы, где входное напряжение поднимается или падает очень медленно или имеет скачки напряжения, известные как «шум»…

Принципиальная схема

На рисунке 2 показана схема таймера на одной микросхеме CD4541B, который предназначен для выключения нагрузки через заданное время.

Вывод 9 подключен к плюсу питания (на них единицы) поэтому выход инверсный, то есть, с начала работы на выходе D1 есть логическая единица. Она поступает через R6 на базу транзистора VT1.

Он открывается и включает реле К1, которое своими контактами включает нагрузку (контакты реле на схеме не показаны, — их включение зависит от схемы нагрузки). Это состояние продолжается пока счетчик D1 считает импульсы от своего встроенного мультивибратора, а зависит это время от частоты импульсов этого мультивибратора. Частота регулируется плавно переменным резистором R1 от 10 до 500 Гц, при этом время включенного состояния нагрузки может быть установлено, в зависимости от положения R1, от 2,2 минуты до 110 минут.

Рис. 2. Принципиальная схема электронного реле времени на 2,2-110 минут, таймер на микросхеме CD4541B.

Поскольку вывод 10 соединен с общим минусом питания микросхема работает в одновибраторном режиме. Это значит, что по окончании временного интервала на выводе 8 устанавливается ноль. Транзистор VТ1 закрывается и реле выключает нагрузку. И работа счетчика на этом останавливается.

Теперь чтобы повторить выдержку нужно обнулить счетчик нажимом кнопки S1. Если нужно чтобы схема включала нагрузку после заданного времени, нужно вывод 9 микросхемы подключить к минусу питания.

R5 = 0,5V/Iled

Рисунок 5 — схема применения драйвера подсветки. Датчиком тока в этом случае является резистор 5, на котором падает напряжение при прохождении через его суммы токов цепочек светодиодов. Это напряжение на R5 сравнивается с внутренним опорным напряжением 0,5 В, как показано на рисунке на рисунке 4.
Другое применение AP3039A представлено на рисунке 6.

Схема устройства на рисунке 6 представляет собой драйвер подсветки, для управления светодиодной матрицей. AP3608E действует как восьмиканальный приемник с согласованием тока для управления светодиодами. Контакты FB, FBX, SDB и SDBX микросхемы AP3608E являются интерфейсными выходами для координации с AP3039A. Вывод FB / FBX AP3608E измеряет напряжение каждого канала и выводит самое низкое напряжение из всех светодиодных цепочек в AP3039A. Когда на выводе EN AP3608E есть сигнал выключения или все светодиодные каналы не активны, вывод SDB / SDBX AP3608E выводит низкий логический сигнал на вывод SHDN AP3039A для ее отключения. Если AP3608E находится в режиме регулирования ШИМ, то вывод SDB / SDBX AP3608E выводит сигнал на AP3039A, который является синхронным с ШИМ.

Первое, что пришло в голову, это разработать приставку к б/у блоку питания от компьютера, для зарядного устройства. А можно сделать светильник в любимое авто с кучей защит. Если на вывод SHDN подать ШИМ, то получим регулировку яркости свечения светодиодов со стабилизацией рабочего тока, это очень важно для последних.
На этом все. Успехов, К.В.Ю.