ЭЛЕКТРИЧЕСКИЕ ТРАНСФОРМАТОРЫ

ЭЛЕКТРИЧЕСКИЕ ТРАНСФОРМАТОРЫ

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.

Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2 , где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

Принцип работы

Устройство трансформатора основано на законе Фарадея, согласно которому переменное магнитное поле может вызвать переменное напряжение на концах витка из проводника. В простейшем трансформаторе это явление провоцируется путём обёртывания нескольких витков провода вокруг сердечника из магнитного материала. Как правило, существует два типа обмоток:

  • первичная (присоединяется к генератору, сети или другому источнику);
  • вторичная (присоединяется к нагрузке).

По сути, любые две (или более) катушки индуктивности, расположенные достаточно близко друг к другу, будут работать как трансформатор. И чем больше они связаны магнитным способом, тем эффективнее их работа.

При изменениях магнитного поля, вызванных прохождением переменного электрического тока через первичную обмотку, напряжение индуцируется во вторичных обмотках в полном соответствии с приложенным к ним магнитным полем.

Этот принцип также используется в генераторах переменного тока, электродвигателях и динамиках акустических систем.

Основная задача трансформаторов — увеличивать или уменьшать напряжение с соответствующим увеличением или уменьшением тока. Каждый из них, независимо от его назначения и роли в электрических схемах, обладает такими общими признаками:

  • в основе используют закон электромагнитной индукции;
  • частота входного и выходного тока одинакова;
  • первичные и вторичные обмотки лишены электрического соединения — передача мощности осуществляется только через магнитный поток.

Условные обозначения и параметры

Приобретая трансформатор, необходимо понимать, что написано на его корпусе или в сопроводительных документах. Ведь существует определенная маркировка трансформаторов, которые определяют его назначение. Основное, на что необходимо обратить внимание, до какого показателя этот прибор может снизить напряжение. К примеру, 220/24 говорит о том, что на выходе получится ток напряжением 24 вольта.

А вот буквенные обозначения чаще всего говорят о типе устройства. Кстати, имеется в виду буквы, стоящие после цифр. К примеру, О или Т – одно- или трехфазный соответственно. То же самое можно сказать о количестве обмоток, о типе охлаждения, о способе и месте установки (внутренние, наружные и прочее).

Расшифровка маркировки трансформатора

Что касается параметров трансформатора, то существует определенный стандартный ряд, который и определяет характеристики прибора. Их несколько:

  • Напряжение в первичной катушке.
  • Напряжение во вторичной катушке.
  • Первичная сила тока.
  • Вторичная сила тока.
  • Общая мощность аппарата.
  • Коэффициент трансформации.
  • КПД.
  • Коэффициент мощности и нагрузки.

Есть так называемая внешняя характеристика трансформатора. Это зависимость вторичного напряжения от вторичной силы тока, при условии, что сила тока первичной обмотки будет номинальной, а cos φ= const. По-простому – чем выше сила тока, тем ниже напряжение. Правда, второй параметр изменяется всего лишь на несколько процентов. При этом внешняя характеристика трансформатора определяется относительными характеристиками, а именно коэффициентом загрузки, который определяется по формуле:

Обозначение на схемах

K=I2/I2н, где второй показатель силы – это сила тока при номинальном напряжении.

Конечно, характеристики трансформатора – это достаточно большой ряд всевозможных показателей, от которых зависит сама работа прибора. Здесь и мощность потерь, и внутреннее сопротивление в обмотке.

Включение трансформаторов на параллельную работу

Стоит отличать данный режим (1 на рисунке ниже — трансформаторы подключены к общим шинам как со стороны ВН, так и со стороны НН) от другого, когда подключение к общим шинам есть только с высокой стороны (2 на рисунке, совместная работа), то есть к секции 10кВ подключены два транса, а с низкой стороны каждый из них питает свою секцию 0,4кВ.

Если отключается один из Т (1 на рис.), то на втором происходит перегрузка, но все механизмы остаются в работе. Если же отключается один из трансов (2 на рис.) — то нагрузка либо отключается, либо переходит на резервный источник питания по АВР.

Ну и естественно расчет схем замещения для данных случаев будет разным:

  • 1 — складываем // сопротивления двигателей, затем складываем // иксы трансформаторов, а затем последовательно первое со вторым
  • 2 — суммируем ветви (двигатель плюс трансформатор), затем полученные иксы складываем параллельно

Далее буду рассматривать только схему под цифрой 1 на рисунке. Для чего же может применятся параллельная работа трансформаторов:

  • повышается надежность, так как при выходе из строя одного из трансов, потребитель не лишается энергии.
  • резервная мощность параллельно включенных трансформаторов будет больше, чем у одного большого
  • при сезонных снижениях нагрузки (зимой больше нагрузки, летом меньше) возможно отключение одного из нескольких. При этом будет обеспечен более экономичный режим работы, так как уменьшаться потери холостого хода

Все плюсы улетучиваются, если установлено два транса по причине нехватки мощности одного из-за роста нагрузки например.

Условия параллельной работы:

    Равенство номинальных напряжений первичных и вторичных обмоток. Следовательно и одинаковое число витков первичных и вторичных обмоток для всех параллельно работающих трансформаторов. Так же перед включением необходимо проверять положения ПБВ и РПН. Если всё подобрано правильно то не должны возникать уравнительные токи. Они возникают из-за неравенства коэффициентов трансформации и текут даже в режиме холостого хода. Воспользовавшись схемой аналогичной схеме замещения ТТ, можно вывести формулу уравнительного тока:

В данной формуле U’, U»; I’, I» — напряжения и токи первого и второго;

uk1, uk2 — напряжения короткого замыкания в процентах;

Избавиться от уравнительного тока можно либо переключив устройства регулировки в нужное положение, либо, устроив ремонт, добиться одного числа намотанных витков.

  • Равенство напряжений короткого замыкания. Напряжение короткого замыкания — такое напряжение, которое необходимо подать в одну из обмоток при замкнутой второй, чтобы в обеих тек номинальный ток. Данное условие необходимо выполнять потому, что отношение uk пропорционально распределению нагрузок и токов.
  • Принадлежность к одной группе присоединения
  • Отношение максимальной мощности к минимальной параллельно работающих трансформаторов должно быть не более 3 к 1. Если отношение мощности будет больше трех, то перегрузка меньшего из Тр может быть больше допустимой и целесообразнее будет вообще его отключить.
  • По ГОСТ 11677-85 ни одна из обмоток не должна быть перегружена током больше допустимого для данной обмотки
  • Если имеется РПН, то окончание переключения ответвлений должно происходить практически одновременно у всей группы. Трансформаторы с РПН мощностью ниже 1000кВА не предназначены для параллельной работы
  • Число параллельно работающих трансформаторов выбирается исходя из условия наименьших суммарных потерь холостого хода и нагрузочных потерь всех машин.
  • Читайте также  Как проверить лазерный уровень на точность

    Первичные и вторичные обмотки соединяются параллельно. При отключении одного, на втором Т возникает перегрузка, которая должна быть учтена при отстройке уставки МТЗ.

    На // подключенных т мощностью 4 МВА и выше должна устанавливаться ДЗТ. Она производит быстрое и селективное срабатывание, отключая только поврежденное оборудование. В случае с МТЗ, при аварии со стороны НН могут отключиться оба трансформатора за счет равенства выдержек времени.

    Для более глубокого погружения в данный вопрос рекомендую прочитать книгу Г.В. Алексенко — Параллельная работа трансформаторов и автотрансформаторов (Трансформаторы, вып. 17) — 1967 года.

    Сохраните в закладки или поделитесь с друзьями

    Режимы работы

    Холостой ход (ХХ)

    Такой порядок работы реализуется от размыкания вторичной сети, после чего в ней прекращается течение электротока. В первичной обмотке течет ток холостого хода, составной его элемент — ток намагничивающий.

    Когда вторичный ток равен нулю, электродвижущая сила индукции в первичной обмотке целиком возмещает напряжение питающего источника, а потому при пропаже нагрузочных токов, идущий сквозь первичную обмотку ток по своему значению соответствует току намагничивающему.

    Функциональное назначение работы трансформаторов вхолостую — определение их важнейших параметров:

    • КПД;
    • показателя трансформирования;
    • потерь в магнитопроводе.

    Режим нагрузки

    Режим характеризуется функционированием устройства при подаче напряжения на вводы первичной цепи и подключении нагрузки во вторичной. Нагружающий ток идет по «вторичке», а в первичной — суммарный ток нагрузки и ток холостой работы. Этот режим функционирования считается для прибора преобладающим.

    На вопрос, как работает трансформатор в основном режиме, отвечает основной закон ЭДС индукции. Принцип таков: подача нагрузки к вторичной обмотке вызывает образование во вторичной цепи магнитного потока, образующего в сердечнике нагружающий электроток. Направлен он в сторону, противоположную его течению, создающегося первичной обмоткой. В первичной цепи паритет электродвижущих сил поставщика электроэнергии и индукции не соблюдается, в первичной обмотке осуществляется повышение электротока до того времени, пока магнитный поток не вернется к своему исходному значению.

    Короткое замыкание (КЗ)

    Переход прибора в этот режим осуществляется при кратковременном замыкании вторичной цепи. Короткое замыкание — особый тип нагрузки, прилагаемая нагрузка — сопротивление вторичной обмотки — единственная.

    Принцип работы трансформатора в режиме КЗ таков: к первичной обмотке приходит незначительное переменное напряжение, выводы вторичной соединяются накоротко. Напряжение на входе устанавливается с таким расчетом, чтобы величина замыкающего тока соответствовала величине номинального электротока устройства. Величина напряжения определяет энергопотери, приходящиеся на разогрев обмоток, а также на активное сопротивление.

    Такой режим характерен для приборов измерительного типа.

    Исходя из многообразия устройств и видов назначения трансформаторов, можно с уверенностью сказать, что на сегодня они — незаменимые, использующиеся практически повсеместно устройства, благодаря которым обеспечивается стабильность и достижение необходимых потребителю значений напряжения, как гражданских сетей, так и сетей предприятий промышленности.

    Силовые трансформаторы. Виды и устройство. Работа и применение

    Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

    Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

    Устройство трансформатора

    Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

    1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

    Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

    Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.

    Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

    Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

    Конструкция силового трансформатора подобна обычному бытовому трансформатору.

    Виды

    Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

    В зависимости от различных факторов силовые трансформаторы делятся на виды:
    • По выполняемой задаче . Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
    • По числу фаз . Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
    • По количеству обмоток . Двухобмоточные и трехобмоточные.
    • По месту монтажа . Наружные и внутренние.

    Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

    Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

    Принцип действия

    Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

    С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

    Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

    Читайте также  Горизонтально сверлильный станок

    В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

    Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

    Сфера использования

    Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились силовые трансформаторы, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

    Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии.

    Вот некоторые области применения силовых трансформаторов:
    • В сварочном оборудовании.
    • Для электротермических устройств.
    • В схемах электроизмерительных устройств и приборов.
    Свойства и расчет трансформатора
    Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:
    • Номинальное значение напряжения и мощности.
    • Наибольший ток обмоток.
    • Габаритные размеры.
    • Вес устройства.

    Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

    Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

    I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

    Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

    Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

    Установка и эксплуатация

    Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

    Силовые трансформаторы устанавливаются на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

    Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

    Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

    После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

    Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

    Основные элементы трансформатора

    Активным элементом является каждая конструктивная деталь. Трансформатор представляет собой довольно сложное оборудование, состоящее из нескольких десятков узлов. Но к главным относятся только магнитная система, в общем смысле представленная магнитопроводом, а также изоляция, обмотки в определенном количестве и расширитель. Дополнительными, способствующими работе элементами, являются баки и выводы, прибор для постоянного охлаждения, переключатели и регулировщики подачи напряжения, измерительные вариации и защитные кожухи, тележки для перевозки и тому подобное.

    Магнитная система

    Магнитопровод — основной конструктивный элемент системы трансформатора. Он работает в магнитной системе — собирательное название для узла. Поток тока подается через узел, что приводит в результате функционирования определенных приборов к преобразованию и достижению необходимых показателей.

    Магнитный провод изготавливается в силовом тс из нескольких листов качественной стали. Используется специальный вид — электротехническая, обладающая повышенными характеристиками проводимости и прочности. В обязательном порядке эти листы, которые рассчитаны на работу с нужным показателем магнитной индуктивности, изолируются — используются специальные разделители. Это позволяет избежать скачка напряжения, а также потерь при прохождении тока.

    Ранее использовались пласты из горячекатаной стали, которые показывали индуктивность до 1,45 Тл при уровне потерь до 3,5 Вт на кг. Толщина пластов составляла от 0,35 до 0,5 миллиметров. Теперь используется сталь, изготовленная холодно тканным методом с лучшими показателями. При удельных потерях, не превышающих 1,1 Вт на кг индукция составляет 1,7 Тл. Использование стали, сделанной по новейшим технологиям, дало массу преимуществ. В первую очередь, проводники стали выпускаться меньшего сечения. Это определяет не только то, что в результате получилось меньшее в два-три раза число обмоток трансформатора, но и то, что масса и размеры самого устройства значительно уменьшились.

    В среднем сейчас вес трансформатора из расчета на единицу показываемой мощности составляет 74 сотых от тонны, в то время как сотню лет назад показатель минимум был 3,3. Следовательно, в результате использования новой методики холодно тканной стали удалось уменьшить размеры трансформатора, точней его магнитной части, в 4-5 раз.

    Магнитная часть трансформатора работает с потерей холостого тока. Чтоб снизить влияние этой характеристики используются методики, касаемо уменьшения удельных потерь, магнитный провод тщательно обрабатывается перед сборкой.

    Листы изолируются друг от друга в обязательном порядке. Если ранее для этой цели применялись обычные бумажные бруски, которые клеились на части пластины, то теперь их покрывают специальным лаком. Его слой едва достигает в 0,01 миллилитра, поэтому не влияет на работу магнитного провода. Он способствует уменьшению нагревания при функционировании и снижению риска повреждения.

    Магнитопровод является основой трансформатора. К нему крепятся обмотки в определенном количестве и проводники. Часть активная, именно она отвечает за подсоединения выводов и обмоток.

    Изоляция трансформатора

    Изоляция оборудования является важной частью, которая регулирует эффективность, надежность и безопасность функционирования устройства. В масляных вариация тс основными элементами конструкции являются маслянистые смеси, в том числе и в сочетании с диэлектриками. Используется распространенная стабилизированная бумага. Она не восприимчива к нагреванию, обладает огромными диэлектрическими свойствами. Именно бумага является основным изоляционным вариантом в трансформаторах сухого типа.

    К устройствам изоляции относят и конструктивные части механизма, в частности, стенки, крышки и дно. Радиаторы примыкают к стенкам, дно необходимо для закрепления деталей, а крышка позволяет закрепить вводы.

    Читайте также  Чертеж шкива

    Конструктивные особенности больших и малых по весу и габаритам трансформаторов заметны визуально. Крышка небольшого варианта имеет разъем. При проведении планового осмотра или необходимых ремонтных работах она просто снимается. Если трансформатор массивный, то изоляция устанавливается на дно, потом заливается маслом. Доступ к ней осуществляется после слива активной части состава — она автоматически поднимается наверх. Дополнительными методиками изоляции являются и пакеты из стали или пластины из намагниченных элементов.

    Обмотки трансформаторов

    Обмотки выполняются чередующимися или концентрическими. Чередующиеся имеют вид невысоких цилиндров с равнозначными показателями, при этом они находятся параллельно друг другу. Такой вид обмотки довольно компактный, не так сильно греется. Но может использоваться только в ограниченных областях. В тоже время концентрированные обмотки размещаются на стержне и напротив друг друга.

    Они удобны и практичны, довольно просты в сборке и ремонте, поэтому устанавливаются в большей части силовых тс.

    Важные показатели обмоток — это прочность. Первое, что должна обеспечивать обмотка, – это защита от электричества, которое непременно возникают при протекании тока. Также обмотки обязательно должны быть механически прочными, так как при работе вводов и выводов возникают напряжения. Конструктивные узлы охлаждаются, так как перегрев грозит коротким замыканием.

    Самые востребованные виды обмоток — медные и алюминиевые. Первые обладают механической прочностью, но не отличаются большим удельным сопротивлением, алюминий же показывает обратные характеристики.

    Расширитель трансформатора

    Расширитель — это цилиндрический сосуд, который необходим для снижения площадки взаимодействия воздуха и масла. Он соединяется с баком. Пр увеличении уровня начинает работу силикагель, поглощающий влагу из воздуха. Дополнение происходит постоянно.

    Как устроен и как работает трансформатор

    Трансформаторы – это название огромного «семейства», куда входят однофазные, трехфазные, понижающие, повышающие, измерительные и множество других типов трансформаторов. Основное их назначение – преобразование одного или нескольких напряжений переменного тока в другое на основе электромагнитной индукции при неизменной частоте.

    Итак, кратко, как работает простейший однофазный трансформатор. Он состоит из трех основных элементов – первичной и вторичной обмоток и объединяющего их в единое целое магнитопровода, на который они как бы нанизаны. Источник подключается исключительно к первичной обмотке, в то время, как вторичная снимает и передает уже измененное напряжение потребителю.

    Подключенная к сети первичная обмотка создает в магнитопроводе переменное электромагнитное поле и формирует магнитный поток, который начинает циркулировать между обмотками, индуцируя в них электродвижущую силу (ЭДС). Ее величина зависит от числа витков в обмотках. К примеру, для понижения напряжения необходимо, чтобы в первичной обмотке витков было больше, чем во вторичной. Именно по такому принципу работают понижающие и повышающие трансформаторы.

    Важная особенность конструкции трансформатора состоит в том, что магнитопровод имеет стальную структуру, а обмотки, как правило имеющие форму цилиндра, изолированы от него, непосредственно не связаны друг с другом и имеют свою маркировку.

    Принцип действия и режимы работы

    Простой трансформатор снабжен сердечником из пермаллоя, феррита и двумя обмотками. Магнитопровод включает комплект ленточных, пластинчатых или формованных элементов. Он передвигает магнитный поток, возникающий под действием электричества. Принцип работы силового трансформатора заключается в преобразовании показателей силы тока и напряжения с помощью индукции, при этом постоянной остается частота и форма графика движения заряженных частиц.

    В трансформаторах повышающего типа схема предусматривает повышенное напряжение на вторичной обмотке по сравнению с первичной катушкой. В понижающих агрегатах входной вольтаж выше выходного показателя. Сердечник со спиральными витками располагается в емкости с маслом.

    При включении переменного тока на первичной спирали образуется переменное магнитное поле. Оно замыкается на сердечнике и затрагивает вторичную цепь. Возникает электродвижущая сила, которая передается подключенным нагрузкам на выходе трансформатора. Функционирование станции проходит в трех режимах:

    1. Холостой ход характеризуется разомкнутым состоянием вторичной катушки и отсутствием тока внутри обмоток. В первичной спирали течет электричество холостого хода, составляющее 2-5% номинального показателя.
    2. Работа под нагрузкой проходит с подключением питания и потребителей. Силовые трансформаторы показывают энергию в двух обмотках, работа в таком регламенте является распространенной для агрегата.
    3. Короткое замыкание, при котором сопротивление на вторичной катушке остается единственной нагрузкой. Режим позволяет выявить потери для разогрева обмоток сердечника.

    Режим холостого хода

    Электричество в первичной спирали равно значению переменного намагничивающего тока, вторичный ток показывает нулевые показатели. Электродвижущая сила начальной катушки в случае ферромагнитного наконечника полностью замещает напряжение источника, отсутствуют нагрузочные токи. Работа на холостом ходу выявляет потери на мгновенное включение и вихревые токи, определяет компенсацию реактивной мощности для поддержания требуемого вольтажа на выходе.

    В агрегате без ферромагнитного проводника потерь на изменение магнитного поля нет. Сила тока холостого режима пропорциональна сопротивлению первичной обмотки. Способность противостоять прохождению заряженных электронов трансформируется при изменении частоты тока и размера индукции.

    Работа при коротком замыкании

    На первичную катушку поступает небольшое переменное напряжение, выходы вторичной спирали накоротко соединены. Показатели вольтажа на входе подбирают так, чтобы ток короткого замыкания соответствовал расчетному или номинальному значению агрегата. Размер напряжения при коротком замыкании определяет потери в катушках трансформатора и расход на противодействие материалу проводника. Часть постоянного тока преодолевает сопротивление и преобразуется в тепловую энергию, сердечник греется.

    Напряжение при коротком замыкании рассчитывается в процентном отношении от номинального показателя. Параметр, полученный при работе в этом режиме, является важной характеристикой агрегата. Умножив его на ток короткого замыкания, получают мощность потерь.

    Рабочий режим

    При подсоединении нагрузки во вторичной цепи появляется движение частиц, вызывающее магнитный поток в проводнике. Оно направлено в другую сторону от потока, продуцируемого первичной катушкой. В первичной обмотке происходит разногласие между электродвижущей силой индукции и источника питания. Ток в начальной спирали повышается до того времени, когда магнитное поле не приобретет первоначальное значение.

    Магнитный поток вектора индукции характеризует прохождение поля через выбранную поверхность и определяется временным интегралом мгновенного показателя силы в первичной катушке. Показатель сдвигается по фазе под 90˚ по отношению к движущей силе. Наведенная ЭДС во вторичной цепи совпадает по форме и фазе с аналогичным показателем в первичной спирали.