Электролит для аккумулятора

Электролит для аккумулятора

Без электролитов невозможна работа перезаряжаемых источников электроэнергии. Существует несколько основных типов таких веществ, которые наиболее часто используются в современных устройствах этого типа. О том, какие существуют виды электролитов, а также каким образом можно приготовить смесь для заливки в аккумуляторную батарею, будет подробно рассказано в этой статье.

Состав электролита для АКБ

Состав электролита зависит от типа аккумулятора:

  1. В свинцовых батареях для автомобилей и мотоциклов используется раствор дистиллированной воды и серной кислоты (формула H2SO4).
  2. В фонарях и стационарных установках – щелочные источники постоянного тока, заправленные 20% водным раствором едкого натрия или калия (NaOH или KOH). Для повышения рабочих характеристик в смесь вводятся присадки (например, на основе моногидрата лития).

Контроль плотности

Плотность в автомобильном свинцово-кислотном аккумуляторе измеряют в гр/см³, и она должна быть пропорциональна концентрации раствора с обратной зависимостью температур жидкости. Нормальный показатель — 1,27-1,29 гр/см³. Этот показатель позволяет определить состояние батареи, и если она не держит заряда, то необходимо проверить количество вещества. Со временем уровень электролита аккумулятора автомобиля сокращается, и соответственно, увеличивается плотность при гидролизе воды и нагрева. Для этого требуется периодически доливать дистиллированную воду, снижая концентрацию серной кислоты. Процедуру можно выполнить самостоятельно, если знать, сколько требуется для определенной модели вещества.

Электролит для аккумуляторов можно приобрести в магазинах, либо сделать своими руками и научиться регулировать плотность, своевременно измерять и ухаживать за устройством для продления срока службы.

Для приготовления потребуются следующие компоненты:

  • Серная кислота.
  • Вода дистиллированная.
  • Емкость из стекла, свинца, керамики, устойчивая к воздействию химического вещества.
  • Эбонитовая баночка для размешивания.

Для приготовления в емкость заливается дистиллированная вода, затем серная кислота, и палочкой параллельно помешивается получаемая смесь. Процедуру проводят последовательно, так как при обратном варианте можно получить ожоги. Если места эксплуатации автотранспорта климат умеренный, то следует придерживаться такой пропорции веществ: на 1 л воды — 0,36 л кислоты. Для теплого климата на 1 л воды следует заливать кислоту в объеме 0,33 л. Полученное вещество накрывается и оставляется на сутки до образования осадков и остывания. При замене электролита в аккумуляторе надевают резиновые перчатки и очки для защиты глаз.

Напомним, что при обратном проведении заливки, в частности, первой воды, возможна реакция гидратации и образования тепла в кислоте. Вероятно, что вода закипит и спровоцирует разбрызгивание.

Проверять плотность аккумулятора необходимо раз в три месяца. Для этого пользуются ареометром.

Щелочной электролит

Состоит данный электролит из щелочной составляющей и дистиллированной воды. Щелочь представляет собой соединения на основе калия (КОН) или лития.

КОН- твердое вещество белого цвета, полностью растворяется в воде при этом выделяется тепло. Электролит для щелочных аккумуляторов изготавливают трех видов:

  • высший, с содержанием КОН до 96%;
  • категории А до 92%;
  • категория В до 88%.

Внимание! В процессе производства щелочного электролита необходимо соблюдать меры предосторожности, так как едкий калий является опасным веществом.

Рекомендуемая плотность для АКБ указывается в паспорте источника питания при изготовлении. Производители при нормальном режиме работы заливают электролит со значением 1,21 г/см 3 , в зимний период концентрация щелочи в нем прибавляется до значения 1,27 г/см 3 .

Плотность щелочного электролита указана в таблице:

Заправка электролита

Приготовленный раствор следует заливать в аккумулятор через воронку из нейтрального материала.

Заливаем жидкость поочередно в секции АКБ. Делаем одинаковый уровень во всех банках. Уровень должен быть от 1 до 1,5 см выше пластин. 2-3 часа не трогаем аккумулятор. Плотность незначительно может уменьшиться при выстаивании.

Далее следует зарядить автомобильный АКБ до рабочих параметров. Для правильной зарядки заправленного аккумулятора надо выставить ток, в значении в 10 раз меньше, чем указано на корпусе АКБ. Например, если на корпусе аккумуляторе написано 65 А*ч (ампер умножить на час), то на зарядном устройстве ставим силу тока 6,5 А (Ампер). В таком значении надо заряжать в течение 4 часов. После зарядки опять замеряем плотность.

Несколько слов о кислотном электролите

Кислотный электролит – это одна из составляющих частей многих аккумуляторных батарей (АКБ). Данная субстанция представляет собой смесь из двух основных элементов:

  • кислоты, которой зачастую выступает серная;
  • и дистиллированной воды.

Подобным раствором часто заправляются свинцово-кислотные аккумуляторы, который уже порядка 170 лет активно эксплуатируются в сфере автомобилестроения. Отметим, что в таком случае электролит находится в жидком состоянии и требует постоянной доливки. Заметно реже при использовании автомобилей применяются гелевые АКБ, в основе которых лежит тот же раствор с отмеченным выше составом, но там он уже находится не в жидком состоянии, а в более-менее загущённым.

В привычном для всех варианте, жидкостный электролит требует периодической заливки, ибо в процессе работы частично испаряется и уходит по газоотводным отделам аккумулятора. Также в зависимости от сезона раствор должен быть либо менее, либо более плотным. Именно правильно поддерживая количество и плотность кислотного электролита от используемой батареи можно добиться наивысшего КПД. По сути, только эти два показателя смеси кислоты и дистиллированный воды требуют должного слежения и соответствующей корректировки.

Как протекает электролитическая диссоциация

Вещества-электролиты устроены за счет ионных или ковалентных полярных связей.

Во время растворения происходит химическое воздействие вещества с молекулами воды, в результате чего оно распадается на электроны. Молекулы воды – активные диполи с двумя полюсами: положительным и отрицательным. Атомы водорода располагаются под углом 104,5°, за счет этого молекула воды приобретает угловую форму.

Вещества, имеющие ионную кристаллическую решетку, намного легче диссоциируют, они уже состоят из активных ионов, а диполи воды во время растворения только ориентируют их. Между диполями воды и ионами электролита возникают усилия взаимного притяжения, связи кристаллической решетки ослабевают и ионы покидают кристалл.

Последовательность процессов при диссоциации растворов с ионной связью

На первом этапе молекулы вещества ориентируются около диполей воды, далее происходит гидратация, а на завершающем этапе диссоциация.

Похожим образом диссоциируют электролиты, у которых молекулы строятся за счет ковалентных связей. Разница только в том, что диполи воды превращают ковалентные связи в ионные. При этом наблюдается такая последовательность процессов:

Электролитическая диссоциация полярной молекулы хлороводорода на гидратированные ионы

В растворах происходит хаотическое движение гидратированных ионов, они могут сталкиваться между собой и опять образовывать отдельные связи. Такой процесс называется ассоциацией.

Классификация электролитов

Все электролиты кроме ионов содержат молекулярные структуры, неспособные переносить разряд. Процентное содержание этих элементов оказывает прямое влияние на возможность проводить ток, параметр обозначается α и определяется по формуле:

Для вычисления берется отношение количества частиц, распавшихся на ионы к общему числу растворенных частиц. Степень распада определяется опытным путем, если она равняется нулю, то диссоциация полностью отсутствует, если равняется единице, то все вещества в электролите распались на ионы. С учетом химического состава электролиты имеют неодинаковую степень диссоциации, параметр зависит от природы и концентрации раствора, чем ниже концентрация, тем выше диссоциация. Согласно данным определениям все электролиты делятся на две группы.

  1. Слабые электролиты. Имеют очень незначительную степень диссоциации, химические элементы почти не распадаются на ионы. К таким электролитам относится большинство неорганических и некоторые органические кислоты. Слабые электролиты расщепляются на ионы обратимо, процессы диссоциации и ассоциации по интенсивности могут сравниваться, раствор очень плохо проводит электрический ток.
Читайте также  Маленький напильник

Способность к диссоциации зависит от нескольких факторов, слабые электролиты во многом определяются химическими и физическими особенностями вещества. Важное значение имеет химический состав растворителя.

  1. Сильные электролиты. Эти растворы в водных растворах интенсивно диссоциируют на ионы, сильные электролиты могут иметь степень диссоциации равную единице. К ним относятся почти весь перечень солей и многие кислоты неорганического происхождения. Сильные электролиты диссоциируют необратимо:

От каких факторов зависит степень диссоциации

  1. Природа растворителя. Степень диссоциации веществ увеличивается прямо пропорционально полярности. Чем больше полярность, тем выше активность имеют сильные электролиты.
  2. Температура во время подготовки раствора. Повышение температуры растворителя увеличивает активность ионов и их количество. Правда, при этом есть вероятность одновременного повышения ассимиляции. Процесс растворения веществ в растворителе должен непрерывно контролироваться, при обнаружении отклонений от заданных параметров немедленно вносятся корректировки.
  3. Концентрация химических веществ. Чем выше концентрация, тем больше вероятность, что после растворения образуются слабые электролиты.

График зависимости константы диссоциации от концентрации

Главные положения теории электролитической диссоциации Согласно существующей теории, электролитическая диссоциация позволяет растворам проводить электрический ток. В зависимости от этой способности они делятся на электролиты и неэлектролиты. Процесс распада веществ на ионы называется диссоциацией, положительно заряженные двигаются к катоду и называются катионами, негативно заряженные двигаются к аноду и называются анионами. Состав электролитов оказывает влияние на способность к диссоциации, технические нормы позволяют определять эту зависимость количественно.

С учетом получаемых после диссоциации ионов изменяется свойство электролитов. Вне зависимости от химического характера образуемых после диссоциации ионов, электролиты подразделяются на три большие классы:

1.Кислоты. В результате распада образуются анионы кислотного остатка и катионы водорода. Кислоты многоосновные могут преобразовываться по первой степени:

2. Основания. Электролиты, дисоциирующие на анионы гидроксогрупп и катионы металла.

3. Соли. Электролиты диссоциируют на анионы кислотного остатка и катионы металлов. Процесс происходит в одну ступень.

Химические свойства электролитов описываются при помощи химических уравнений и определяются свойствами образованных ионов. Для удаления вредных химических соединений, выделяемых в воздух во время диссоциации, используются химически нейтральные пластиковые воздуховоды.
Перспективы развития теории диссоциации На современном этапе развития теории ученые предпринимают попытки описать динамические и термодинамические свойства электролитов учитывая концепцию ионно-молекулярной структуры. Классическая теория считается примитивной, в ней ионы представляются как заряженные жесткие сферы. Главный недостаток традиционной теории – невозможность объяснить локальное снижение диэлектрической проницательности в первом приближении. Ряд растворителей поддается описанию физических свойств ступенчатой зависимостью, но протонные водные растворители имеют намного сложнее процессы релаксации.

Непримитивные модели, рассматривающие ионы в одинаковом масштабе, делятся на две группы:

  1. Первая. Жидкие фазы рассматриваются как максимально разупорядочные кристаллы, размеры не более пяти молекулярных диаметров.
  2. Вторая. Жидкости описываются как сильно неидеальные газы. Молекулы растворителя являются точными или обыкновенными диполями.

Зависимость диэлектрической проницаемости от расстояния между ионами

Неравновесные явления в растворах электролитов

Неравновесный распад объясняется несколькими физическими процессами.

  1. Миграцией и диффузией ионов. Обуславливается сравнительно большим количеством ионных перескоков за единицу времени в сравнении с иными направлениями.

Контакт двух растворов с различными показателями концентрации

  1. Эквивалентной и удельной электропроводностью. Электропроводность обеспечивается миграцией ионов, замеры выполняются таким способом, чтобы исключалось влияние градиента химического потенциала.

Принципиальная схема моста переменного тока во время измерения электропроводности

  1. Числом переноса. Определяется суммой электрической проворности аниона и катиона. Доля тока называется электрическим числом переноса.

Схема определения числа переноса

Перемещение ионов в среде электрического поля по статистике является усредненным процессом, ионы делают беспорядочные перескоки, а элегическое поле оказывает только определенное влияние, точно рассчитать силу и вероятность влияния невозможно. В связи с этим, аналогия диссоциации с обыкновенным поступательным движением твердых тел весьма приближенная, но она позволяет принимать правильные качественные выводы.

Другие виды АКБ: можно ли приготовить электролит для них самостоятельно?

Отдельно хотелось бы обратить внимание на современные свинцово-кислотные источники питания — гелевые и AGM. Они также могут быть заправлены собственноручно приготовленным раствором, который в них находится в специфической форме — в виде геля или внутри сепараторов. Для заправки гелевых аккумуляторов понадобится ещё один химический компонент — силикагель, который загустит кислотный раствор.

Кадмиевоникелевые и железоникелевые аккумуляторы

В отличие от свинцовых источников питания, кадмиево- и железоникелевые заливаются щелочным растовром, который является смесью дистиллированной воды и едкого калия или натрия. Гидроксид лития, входящий в состав этого раствора для определённых температурных режимов, позволяет увеличить срок службы АКБ.

Таблица 2. Состав и плотность электролита для кадмиево- и железоникелевых и аккумуляторов.

Железоникелевые источники питания рекомендуется эксплуатировать в тех же условиях, что и кадмиево-никелевые. Однако стоит отметить, что они более восприимчивы к низким температурам. Поэтому их следует использовать до минус 20 градусов.

Заключение

Срок службы аккумуляторной батареи ограничивается ее техническими характеристиками. Однако неправильное использование и хранение может существенно снизить этот показатель. Чтобы АКБ не изнашивалась стремительно, нужно следить за плотностью электролита и его уровнем.

В результате химических процессов повышение плотности раствора происходит из-за высокой температуры и естественных реакций окисления и восстановления. Поэтому следует доливать дистиллят. Сильное падение плотности требует полноценной замены электролитической жидкости. Важно соблюдать меры предосторожности при работе с емкостью, а также следовать четким инструкциям.