Приборы для измерения скорости ветра

Анемометр. Виды и работа. Применение и отличия. Особенности

Анемометр – это измерительный прибор фиксирующий скорость движения воздуха и газов. Устройство получило название от греческих слов «анемос матрео», дословный перевод которых обозначает «измерение ветра» Прибор изобретен известным ученым Робертом Гуком в 1667 году.

Сфера использования

Анемометры применяют метеорологи для определения скорости порывов ветра, такое оборудование устанавливается в аэропортах и на аэродромах. Им проверяют эффективность работы вентиляционного оборудования и различных промышленных установок.

Данными приборами пользуются снайперы для коррекции прицеливания во время выстрела, беря поправку на фактическую силу ветра. Анемометры также применяются спортсменами, участвующими в соревнованиях по стрельбе из огнестрельного, пневматического и стрелометательного оружия. Прибор можно встретить в арсенале любителей парусного спорта. Интегрированные анемометры устанавливаются в приборную панель башенных кранов, чтобы предупреждать машиниста о порывах ветра, что опасно для нагруженной подъемной стрелы. Таким оборудованием пользуются аграрии во время опрыскивания полей.

Виды устройств
По принципу действия анемометры классифицируются на 4 группы:
  • Вращающиеся.
  • Термические.
  • Акустические.
  • Лазерные.

Они кардинально отличаются между собой по применяемой технологии определения скорости газовых потоков.

Вращающиеся анемометры
Такие устройства представлены двумя схожими по принципу действия конструкциями:
  1. Чашечная.
  2. Крыльчатая.

Чашечный анемометр является старинным механическим устройством, вполне актуальным до сих пор. Такой прибор оснащено лопастями, лепестки которых выполнены в форме полусфер подобных чашам. Данная конструкция весьма эффективна, поскольку позволяет начать измерение с минимальной погрешностью, поскольку практически не нуждается в установке чаш по направлению ветра. Главное, чтобы поток двигался в полость полусфер, а не их обтекаемое дно.

Чашечный анемометр работает по принципу счетчика оборотов. Высчитывается сколько раз обернулась ось с лопастями, после чего полученное число разделяется на коэффициент прибора, который зависит от площади и количества чашек. Коэффициент для разных устройств составляет от 2 до 3. Надобность в измерении на протяжении определенного промежутка времени возникает только при использовании полностью механических приборов. У электронных чашечных анемометров программа способна определить текущие порывы буквально с нескольких оборотов. Подавляющее большинство чашечных устройств не реагируют на медленные порывы, скорость которых ниже 1 м/сек. Классическая чашечная конструкция не позволяет определять направление потока.

Крыльчатые анемометры также называют лопастными. Это более компактные устройства, работающие по аналогичному принципу с чашечными. При порывах ветра или газа осуществляется вращение лопастей, подобных тем, что можно встретить на вентиляторах или летательных аппаратах. Скорость ветра также определяется путем деления количества оборотов на коэффициент прибора. Для наиболее точного измерения необходимо выставить диффузор устройства по направлению движения потока. Зачастую в комплектации к крыльчатым анемометрам идет небольшой флюгер. Он позволяет определять направление ветра. Приборы данного типа способны измерять поток движения в пределах от 0,1 м/сек.

Термический анемометр

Тепловое устройство также называется термоанемометром. В нем предусматривается термопара. Прибор фиксирует ее теплопотери в результате обдува. Данный принцип вполне знаком многим. К примеру, при сильном ветре холод ощущается сильнее, чем при такой же температуре на улице, но в безветренную погоду.

Тепловые анемометры имеют нить накаливания, через которую пропускается электрический ток. В результате от интенсивности обдува температура нити меняется, что влияет на токопроводимость металла. Именно от этих изменений и отталкивается электроника устройства для расчета скорости воздушных порывов. Такое оборудование редко применяется как самостоятельный прибор, и в большинстве случаев является интегрированным в прочие системы. У автомобилей термоанемометр представлен в виде датчика массового расхода воздуха, по которому определяется соотношение приготовления горючей жидкости для двигателя внутреннего сгорания.

Акустические анемометры

Такие устройства еще называют ультразвуковыми. Подобное оборудование создает ультразвуковой сигнал, после чего измеряется скорость его передвижения. Движущиеся воздушные потоки влияют на данный показатель. Полученные результаты переводятся электронным оборудованием прибора в показатель скорости. Анемометр этого типа обычно применяется для измерения скорости потоков газа. Такие системы намного сложнее, чем может показаться изначально. Они не просто берут во внимание затраты времени, которые уходят на прохождение ультразвуковой волны от передатчика до приемника, но и принимают во внимание внешние факторы. В первую очередь это температура и влажность воздуха.

Лазерные анемометры

Устройства работающее по данной технологии были разработаны последними, поэтому еще не набрали столь широкого распространения. Они представлены компактными приборами, которые используются любителями экстремального отдыха. Лазерное устройство называется допплеровским в честь изобретателя, который предложил принцип, согласно которому частота излучения зависит от скорости относительного движения источника и приемника.

Полученный на основе данного принципа лазерный анемометр — это сложный оптико-электронный измерительный комплекс. Принцип работы прибора заключается в следующем. Движущийся в воздушном или газовом потоке объект освещается лазерным излучением из фиксированного источника. В результате световая волна отражается от объекта, что регистрируется соответствующим датчиком. В результате высчитывается разница между частотой излучения отправленного изначально света и отраженного. Данные показатели берутся в расчет, и на их основании высчитывается скорость движения ветра или газа.

Отличие между устройствами

В первую очередь анемометры можно поделить на электронные и полностью механические. При использовании последних потребуется вручную считать обороты, после чего проводить расчеты по формуле. В случае с электронными приборами все намного проще. Кроме отсутствия необходимости в расчетах, они обладают более высокой чувствительностью.

Могут фиксировать 3 параметра:
  • Текущую скорость.
  • Максимальные порывы.
  • Средний показатель.

Также можно встретить анемометры, у которых непосредственный элемент измерения вынесен отдельно и сделан в качестве зонда. В этом случае устройством пользоваться гораздо удобнее. Можно проводить замеры сразу смотря на дисплей с результатами. Такое устройство имеют в первую очередь вращающиеся анемометры. Для предотвращения запутывания зонд и прибор соединяются витым эластичным кабелем.

Дополнительно электронный анемометр может иметь собственную память для сохранения результатов. Более дешевый ассортимент лишен данной функции или может хранить всего несколько измерений, не отображая при этом дату и время их получения.

Назначение инструмента

Анемометр — это прибор для измерения скорости ветра, в переводе с древнегреческого, — «ветромер». Но греки здесь ни при чём, поскольку прибор был изобретён ирландским астрономом Джоном Робинсоном в середине XIX столетия. Цель изобретения состояла в определении силы, или выражаясь по-научному — скорости ветра. Сегодня он применяется в различных отраслях хозяйства:

  • На метеорологических станциях, ведущих наблюдение за погодой, результаты которых выливаются иногда в штормовые предупреждения.
  • В аэродромных службах обеспечения безопасности полётов.
  • При эксплуатации вентиляционных систем и станций кондиционирования промышленных объектов, тоннелей метро.
  • Для контроля вентиляции проходческих штреков, используемых в горных и угледобывающих отраслях.
  • В строительной сфере. Вертушка, установленная на башенном кране, в случае превышения допустимой ветровой нагрузки предупреждает машиниста об опасности с помощью светозвукового сигнала.
  • Работники аграрной отрасли применяют анемометр во время проведения опыления посевов удобрениями и средствами химической защиты растений.
  • Используется в некоторых видах спорта, связанных с использованием силы ветра: парапланеризм, парусные регаты, гонки на буерах и так далее.
Читайте также  Приспособление для курения

Виды приборов

  • Чашечный анемометр

Принцип работы заключается в измерении характера воздействия воздушных масс на специальные чашки, закрепленные на вертикальной оси. Когда происходит дуновение ветра, чашки вращаются вокруг оси. Измеритель фиксирует количество оборотов вокруг оси по времени и определяет скорость ветра. Данные передаются на шкалу скорости ветра, иногда используется электронный измеритель.

  • Анемометр крыльчатый

Принцип его работы заключается в измерении характера воздействия ветра на миниатюрное колесо (крыльчатку), закрепленное на вертикальной оси и огражденное металлическим кольцом для защиты от механических повреждений. При движении ветра происходит вращение крыльчатки, которое через систему зубчатых колес передается на измеритель. Данный прибор также имеет две разновидности измерителя: ручной и электронный.

Основан на изменении числа Нуссельта, то есть увеличения теплопотерь нагретого тела пропорционально увеличению скорости движения воздушных масс. Данное явление можно наблюдать в жизни — при равной температуре воздуха в ветреную погоду становится холоднее, чем в спокойную. Данный прибор представляет собой нагретую до температуры, превышающей температуру среды, металлическую проволоку.

В зависимости от текущей скорости, его плотности и влажности ветра проволока выделяет определенное количество энергии, позволяющее поддерживать ту или иную температуру проволоки. Измеритель фиксирует теплопотери и выводит параметры движения ветра на экран. Впрочем, у прибора существует 2 недостатка:

  1. Низкая прочность теплового элемента, так как он представлен очень тонкой проволокой.
  2. Погрешность показаний со временем увеличивается из-за загрязнения и окисления проволоки.

Ввиду вышеописанного их применяют, как правило, применяют в аэродинамике для того, чтобы измерять параметры движения воздушных масс, потому как тепловые анемометры, в отличие от механических, обладают безынерционностью, что является необходимым условием для проведения аэродинамических экспериментов.

  • Ультразвуковой анемометр

Принцип действия заключается в характере изменения скорости звука при движении относительно ветра. Так можно измерять не только текущую силу движения ветра, но и направление его движения. Так как скорость звука зависит еще и от температуры воздуха, то данный анемометр снабжен еще и термометром, по показаниям которого вносятся правки в конечные результаты параметров движения воздушных масс, выдаваемые анемометром.

На сегодняшний день ультразвуковой анемометр является самым высокоточным и современным прибором данной категории. Помимо всего прочего, некоторые электронные анемометры могут измерять также температуру воздуха в момент движения воздушных масс, а также его влажность.

Бестселлер: testo 410-2

Анемометр с крыльчаткой

Анемометры в сочетании со смартфонами

Многофункциональные измерительные приборы

Измерение скорости ветра – анемометр с крыльчаткой и области его применения

Понятие измерения скорости ветра у многих пользователей ассоциируется, прежде всего, с использованием на открытом воздухе. На самом деле анемометры используются далеко не только там. В частности, их часто применяют для измерения скорости воздуха в помещениях. Для систем вентиляции ключевое значение имеют величины скорости воздуха, температуры и влажности. Если эти величины не корректны или меняются, это может отразиться на качестве воздуха в помещении. Проблема заключается в том, что контролировать системы вентиляции не всегда просто.

Вот здесь анемометр вступает в свои права. Некоторые анемометры можно легко вставить в вентиляционную шахту с помощью телескопической рукоятки, чтобы измерять там скорость потока. Анемометр с крыльчаткой прекрасно для этого подходит. Большинство моделей оснащены телескопическими рукоятками. Они позволяют легко проводить измерения скорости потока в воздуховоде. Однако такие рукоятки можно использовать и вне помещений.

В зависимости от модели, вы можете использовать анемометр с крыльчаткой не только для определения скорости ветра. Он также позволяет измерять скорость потока и объемный расход в системах вентиляции. Некоторые модели могут рассчитывать точку росы и температуру шарика смоченного термометра. Эти величины в сочетании со скоростью и температурой воздуха очень важны для анализа данных.

Анемометры этого типа оснащены встроенной крыльчаткой, диаметр которой может различаться. Для определения объемного расхода вы можете также использовать электронный балометр. Сочетание различных измерительных приборов очень важно для получения точных величин. Например, вы можете использовать вместе такие приборы, как анемометр с крыльчаткой, термоанемометр и электронный балометр.

Основные преимущества анемометра с крыльчаткой:

  • измерение скорости воздуха в помещении и под открытым небом
  • возможно измерение объемного расхода и температуры
  • очень хорошая регистрация данных
  • простота в использовании даже в стеснённых пространствах
Анемометр на Викискладе ?
  • Анемология // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб. , 1890—1907.

  • Викифицировать статью.
  • Проставив сноски, внести более точные указания на источники.
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

  • Штурмовик
  • Шрифт

Смотреть что такое «Анемометр» в других словарях:

анемометр. — анемометр … Орфографический словарь-справочник

АНЕМОМЕТР — (от греч. anemos ветер и metron мера), прибор для измерения скорости ветра, а также для определения скорости движения воздуха и газов в вентиляционных каналах, туннелях, дымогарных трубах и т. п. Различают две основных системы А.: а) динамические … Большая медицинская энциклопедия

АНЕМОМЕТР — (от греч. anemos ветер, и metron мера). Прибор для определения направления и силы ветров. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. АНЕМОМЕТР от греч. anemos, ветер, и metron, мера. Прибор для измерения… … Словарь иностранных слов русского языка

АНЕМОМЕТР — (Anemometer, wind gauge) прибор для определения скорости ветра, большей частью состоящий из вертушки и системы зубчатых колес, связанных со стрелками, показывающими скорость ветра в метрах в сек. На судах чаще всего применяются ручные А. Фусса.… … Морской словарь

анемометр — а м. anémomètre m. физ. прибор для измерения силы и направления ветра. Сл. 18. Прибор для измерения скорости ветра. 1925. Вейгелин Сл. авиа. Для усмотрения скорости движения воздуха зделан .. инструмент, которыи называется анемометр. Прим. Вед.… … Исторический словарь галлицизмов русского языка

АНЕМОМЕТР — АНЕМОМЕТР, прибор для измерения скорости ветра. Состоит из трех чашек, закрепленных на прямом металлическом стержне, который в свою очередь приводит в движение механизм, снабженный шкалой. Когда ветер дует, чашки вращаются, и величину скорости… … Научно-технический энциклопедический словарь

АНЕМОМЕТР — (от анемо. и . метр) прибор для измерения скорости ветра и газовых потоков (иногда и направления ветра анеморумбометр) по числу оборотов вращающейся вертушки … Большой Энциклопедический словарь

АНЕМОМЕТР — муж., греч. ветромер, снаряд для измерения силы, скорости, а иногда и направления ветра. Анемоскоп муж. ветроуказатель, ветреница, ветрушка. Анемон муж. растение из ·смст. лютиковых, Anemone; ветреница, подснежник, черное зелье, одномесячник,… … Толковый словарь Даля

анемометр — сущ., кол во синонимов: 5 • анемоскоп (1) • ветромер (3) • микроанемометр (1) … Словарь синонимов

Анемометр — прибор для измерения скорости движения воздуха (ветра) и газовых потоков (обычно скорости и направления ветра). Крыльчатый А. служит для измерения скорости направленного потока воздуха в трубах и каналах вентиляционных систем. Манометрический А.… … Российская энциклопедия по охране труда

Читайте также  Станок для производства саморезов

анемометр — anemometer Anemometer, Windgeschwindigkeitsmesser прилад для вимірювання швидкості руху вітру, газових та рідинних потоків. За конструкцією розподіляються на крильчасті, чашкові та термоелектричні. В гірничій справі використовується для контролю… … Гірничий енциклопедичний словник

Не слишком востребованы тепловые приборы. Чаще всего необходимость в их применении возникает при измерении показателей медленных воздушных потоков.

Функционирует тепловой датчик скорости ветра по принципу измерения температуры нити накаливания либо специальной пластины, на которую оказывается давление воздуха. При различных показателях потока выделяется определенное количество энергии, которое позволяет поддерживать ту или иную температуру теплового элемента. Таким нехитрым способом и определяется скорость ветра.

Приборы для измерения скорости ветра

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:

1 Этап. Корректируем плоскость по трем точкам

Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.

Алгоритм настройки:

  1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)

    После чего мы увидим все настройки принтера.
  2. Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
    И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
  3. Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
  4. Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
  5. Теперь приступаем непосредственно к настройке наших трех точек.
    Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    Калибровка:

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:
      G666 R67,7
      M500
      G28
    5. Подгоняем дельта радиус пока наша плоскость не выровняется
    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    Измеритель скорости ветра

    Бывали ли у вас случаи, когда после установки нового камина, вам кажется, что тяга в нём упала? Или вам необходимо запустить воздушного змея, а определить достаточна для него скорость ветра или нет, нет возможности? Или же вы просто любите разные виды спорта на открытом воздухе, такие как гольф, где скорость ветра крайне важна, а точно определить её весьма трудно? Теперь это не проблема! Мы рады представить вам универсальный анемометр!

    Анемометр — это прибор для измерения скорости движения газов, в различных системах: вентиляции, дымоходе камина итд. Метеорологами он также применяется для точного определения скорости ветра в текущий момент времени, на текущем участке земли.

    Анемометр крыльчатый отлично зарекомендовал себя как измеритель скорости ветра и прибор для измерения температуры воздуха. Так как он оборудован встроенным датчиком температуры, с минимальной погрешностью.

    Классификация приборов :

    Основные составные части :

    • Приемное устройство (чувствительный элемент анемометра, первичный преобразователь анемометра);
    • Вторичный преобразователь (механический, пневматический или электронный блок анемометра);
    • Отсчетное устройство (указатель стрелки, шкала, индикатор, дисплей анемометра).

    По принципу действия чувствительных элементов :

    • Заторможенные или динамометрические (трубки Пито — Прандтля);
    • Вращающиеся (чашечные, винтовые, крыльчатые);
    • Поплавковые;
    • Тепловые (термоанемометры);
    • Вихревые;
    • Ультразвуковые (акустические);
    • Оптические (лазерные, доплеровские).

    Предлагаем широкий выбор переносных и стационарных приборов всевозможных марок и модификаций как отечественных, так и зарубежных фирм-изготовителей.

    Изделия внесены в Государственный реестр средств измерений России.