Биполярные транзисторы: устройство, принцип и режимы работы, схема включения, применение, основные параметры

Основной функцией биполярного транзистора (БТ) является увеличение мощности входного электрического сигнала. Эти полупроводниковые радиокомпоненты появились, как альтернатива электровакуумных триодов, и со временем практически вытеснили их из отрасли. Справедливости ради заметим, что лампы применяются и до сих пор, но в очень и очень узком сегменте аппаратуры специального назначения. В массовой же радиотехнике используются, в основном, транзисторы – биполярные и их ближайшие «родственники» полевые.

Ключевое преимущество этих элементов состоит в миниатюрности. Электровакуумный усилитель со схожими характеристиками оказывается в несколько раз крупнее биполярного транзистора. Вследствие этого применение БТ в радиоэлектронике приводит к существенному уменьшению габаритных размеров конечной радиотехнической продукции.

Биполярным данный транзистор называется из-за того, что в физических процессах, протекающих во время его функционирования, участвуют оба типа носителей заряда – и электроны, и дырки. Это оказывает влияние на принцип управления выходным сигналом. В биполярных транзисторах выходными параметрами управляет ток, а не электрическое поле, как в полевых (униполярных).

Устройство биполярного транзистора.

Этот полупроводниковый триод состоит из 3 частей – эмиттера, коллектора и базы. Таким образом, ключевыми элементами биполярного транзистора являются два p-n-перехода, а не один, как в полевых. Эмиттер исполняет функцию генератора носителей заряда, которые формируют рабочий ток, стекающий в приёмник – коллектор. База необходима для подачи управляющего напряжения.

Если рассматривать плоскую модель БТ, то радиокомпонент представляет собой две области с p- или n-проводимостью (эмиттер и коллектор), разделённые тонким слоем полупроводника с проводимостью обратного знака (база). Полупроводниковый кристалл со стороны коллектора физически крупнее. Такое соотношение обеспечивает правильную работу биполярного транзистора.

В зависимости от типа проводимости эмиттера, коллектора и базы различают PNP- и NPN-транзисторы. В принципе, они функционируют одинаково с той лишь разницей, что к ним прикладываются напряжения разной полярности. Выбор того или иного вида БТ определяется особенностями конкретных радиотехнических устройств.

Принцип работы биполярного транзистора.

При подключении эмиттера и коллектора к источнику питания создаются почти все условия для протекания тока. Однако свободному перемещению носителей заряда препятствует база, и для устранения этой помехи на неё подаётся напряжение смещения. В базовом слое полупроводника возникают физико-химические процессы электронно-дырочной рекомбинации, в результате которой через базу начинает течь небольшой ток. В результате p-n-переходы открывают путь потоку носителей заряда от эмиттера к коллектору.

Если ток, протекающий через базу, меняется по какому-то закону, то точно так же изменяется и мощный ток между эмиттером и коллектором. Следовательно, мы получаем на выходе биполярного транзистора такой же сигнал, как и на базе, но с более высокой мощностью. В этом и состоит усилительная функция биполярного транзистора.

Режимы работы.

Существует 4 режима, в одном из которых может работать биполярный транзистор. В этот список входят следующие:

  1. отсечка;
  2. активный режим;
  3. насыщение;
  4. барьерный режим.

Существует ещё так называемый инверсный режим, но он на практике не используется и интересен только при теоретических исследованиях поведения полупроводников. Поэтому опишем подробнее только четыре первых.

1. Отсечка.

В том случае, если разность потенциалов между эмиттером и базой ниже некоторого значения (примерно 0.6 Вольт), то база-эмиттерный p-n-переход оказывается закрытым, поскольку ток базы не возникает. В связи с этим коллекторный ток не протекает по той причине, что в базовом слое отсутствуют свободные электроны. Таким образом, транзистор переходит в состояние отсечки и сигнал не усиливает. Этот режим используется в цифровых схемах, когда БТ работает как ключ в положении «разомкнуто».

2. Активный режим.

В этом режиме радиокомпонент усиливает сигнал, то есть исполняет свою основную функцию. На базу подаётся разность потенциалов, которая открывает база-эмиттерный p-n-переход. Как следствие, в транзисторе начинают протекать токи коллектора и базы. Значение коллекторного тока вычисляется как арифметическое произведение величины тока базы и коэффициента усиления.

3. Насыщение.

В этот режим биполярный транзистор входит при увеличении тока базы до некоего предельного значения, при котором p-n-переходы полностью открываются. Значение тока, протекающего через БТ при его насыщении, зависит лишь от питающего напряжения и величины нагрузки в коллекторной цепи. В данном режиме входной сигнал не усиливается, ведь коллекторный ток не воспринимает изменений тока базы. Способность транзистора к переходу в насыщение используется в цифровой технике, когда БТ играет роль ключа в замкнутом положении.

4. Барьерный режим.

Здесь транзистор работает как диод с последовательно включённым резистором. Для этого базу напрямую или через малоомное сопротивление соединяют с коллектором. В данном режиме триоды хорошо показывают себя в высокочастотных устройствах. Кроме того, использование транзистора в барьерном режиме целесообразно на реальном производстве для снижения общего количества комплектующих.

Схемы включения биполярных транзисторов.

Полупроводниковый триод может включаться в электрическую цепь по одной из трёх схем – с общим эмиттером, с общим коллектором и с общей базой. В зависимости от способа подключения различаются электрические параметры транзистора, что определяет выбор схемы в каждом конкретном случае.

При включении биполярного транзистора с общим эмиттером достигается максимальное усиление входного сигнала. Благодаря этому данная схема в усилительных каскадах применяется чаще всего.

Схема с общим коллектором по-другому называется эмиттерным повторителем. Это связано с тем, что разность потенциалов на коллекторе и эмиттере оказываются практически равными. При таком включении наблюдаются большое усиление по току, высокое входное сопротивление и совпадение фаз входного и выходного сигналов. Вследствие этого эмиттерные повторители используются в согласующих и буферных усилителях.

При включении БТ по схеме с общей базой отсутствует усиление по току, но значительным оказывается усиление по напряжению. Особенностью данного способа является малое влияние транзистора на сигналы высокой частоты. Это делает схему с общей базой предпочтительной для использования в устройствах СВЧ.

Основные параметры биполярных транзисторов:

  1. Максимально допустимый постоянный ток коллектора;
  2. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и сопротивлении в цепи база-эмиттер;
  3. Максимальное напряжение между коллектором и эмиттером при заданном токе коллектора и токе базы, равным нулю;
  4. Максимальное напряжение коллектор-база при заданном токе коллектора и токе эмиттера, равным нулю;
  5. Максимально допустимое постоянное напряжение эмиттер-база при токе коллектора, равном нулю;
  6. Максимально допустимая постоянная мощность, рассеивающаяся на коллекторе;
  7. Статический коэффициент передачи тока;
  8. Напряжение насыщения между коллектором и эмиттером;
  9. Обратный ток коллектора. Ток через коллекторный переход при заданном обратном напряжении коллектор-база и разомкнутом выводе эмиттера;
  10. Обратный ток эмиттера. Ток через эмиттерный переход при заданном обратном напряжении эмиттер-база и разомкнутом выводе коллектора;
  11. Граничная частота коэффициента передачи тока;
  12. Коэффициент шума;
  13. Емкость коллекторного перехода;
  14. Максимально допустимая температура перехода.

Устройство биполярного транзистора

Согласно типовых схем, буквой «Б» называется «База» — внутренний слой аппарата, его фундамент, который приводит преобразование или изменение токового сигнала. Стрелка в кругу показывает движение токовых зарядов в «Э».

Читайте также  Приспособление для курения

«Э» — «Эмиттер» — внутренняя основная составляющая транзистора, предназначенный для переноса заряженных элементарных частиц в «Б».

«К» — «Коллектор» — вторая составляющая транзисторного устройства, которая производит сбор тех же зарядов, которые проходят через «Б».

Пласт «Базы» конструктивно выполняют очень тоненьким в связи с рекомбинированием заряженных частиц, которые идут через базовый слой, с составными частицами данного пласта. В то же время пласт «Коллектора» конструируют как можно шире для качественного сбора зарядов.

Принцип работы биполярного транзистора.

Итак, транзистор содержит два p-n перехода (эмиттер-база и база-коллектор). Если не прикладывать к выводам транзистора никаких внешних напряжений, то на каждом из p-n переходов формируются области, обедненные свободными носителями заряда. Все в точности так же как здесь 🙂

В активном же режиме переход эмиттер-база (эмиттерный переход) имеет прямое смещение, а коллекторный переход – обратное.

Так как переход эмиттер-база смещен в прямом направлении, то внешнее электрическое поле будет перемещать электроны из области эмиттера в область базы. Там они частично будут вступать во взаимодействие с дырками и рекомбинировать.

Но большая часть электронов доберется до перехода база-коллектор (это связано с тем, что область базы конструктивно выполняется очень тонкой и содержит небольшой количество примесей), который смещен уже в обратном направлении. И в этом случае внешнее электрическое поле снова будет содействовать электронам, а именно помогать им проскочить в область коллектора.

В результате получается, что ток коллектора приблизительно равен току эмиттера:

Коэффициент alpha численно равен 0.9…0.99. В то же время:

А что произойдет, если мы увеличим ток базы? Это приведет к тому, что переход эмиттер-база откроется еще сильнее, и большее количество электронов смогут попасть в область коллектора (все по тому же маршруту, который мы обсудили 🙂 ). Давайте выразим ток эмиттера из первой формулы, подставим во вторую и получим:

Выражаем ток коллектора через ток базы:

Коэффициент beta обычно составляет 100-500. Таким образом, незначительный ток базы управляет гораздо большим током коллектора. В этом и заключается принцип работы биполярного транзистора!

Коэффициент, связывающий величину тока коллектора с величиной тока базы называют коэффициентом увеличения по току и обозначают h_ <21>. Этот коэффициент является одной из основных характеристик биполярного транзистора. В следующих статьях мы будем рассматривать схемы включения транзисторов и подробнее разберем этот параметр и его зависимость от условий эксплуатации.

Материалы корпуса транзисторов

Транзисторы небольшой мощности изготавливают в прямоугольных корпусах из полимерных материалов или в металлических (цилиндрической формы). Можно найти десятки разных типов транзисторных корпусов совершенно отличных форм и размеров.

Сам полупроводник, основа транзистора, имеет размер песчинки или даже меньший. К нему практически невозможно подпаять провода, поэтому кристалл помещают в более просторный корпус из металла или пластика.

Рассмотрев принцип работы транзистора, можно отметить что несмотря на довольно простое устройство, данный полупроводниковый компонент играет важную роль в схемотехнике.

Особенности применения биполярных транзисторов в схемах

Главной бедой транзисторной схемотехники является то, что ей предшествовала ламповая. Большинство схематических решений, которые сейчас применяются, заимствованы из того периода и адаптированы под особенности транзисторов. Однако при всей своей кажущейся схожести, на самом деле электронная лампа и транзистор — приборы совершенно разные. У электронной лампы ток выходной цепи регулируется напряжением во входной, а у транзистора — током во входной цепи. Это отличие — принципиальное для схемотехники.

Попытка адаптировать решения для электронных ламп под транзисторы обычно сводит на нет все их преимущества. Получается на корове седло. Пересмотр многих схемных решений, создание именно транзисторных схем во многих областях еще ждет своего часа.

1 2

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери.
Как проверить исправность биполярного и полевого транзисторов. Методика испытани.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Транзисторы КТ503, 2Т503. Справочник, справочные данные, параметры, цо.
Характеристики и применение биполярных транзисторов КТ503 (КТ503А, КТ503Б, КТ503.

Бестрансформаторные источники питания, преобразователи напряжения без .
Расчет онлайн гасящего конденсатора бестрансформаторного источника питания.

Составной транзистор. Схемы Дарлингтона, Шиклаи. Расчет, применение.
Составной транзистор — схемы, применение, расчет параметров. Схемы Дарлингтона, .

Защита силового ключа от перенапряжения. Сброс скачков напряжения на т.
Как защитить силовой транзистор от пробоя броском высокого напряжения. Описание .

Схемы включения

Любая схема включения транзистора характеризуется двумя основными показателями:

  • Коэффициент усиления по току Iвых/Iвх.
  • Входное сопротивление Rвх=Uвх/Iвх

Схема включения с общей базой

Усилитель с общей базой.

  • Среди всех трех конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется.
  • Коэффициент усиления по току: Iвых/Iвх=Iк/Iэ=α [α Схема включения с общим эмиттером
  • Большой коэффициент усиления по току
  • Большой коэффициент усиления по напряжению
  • Наибольшее усиление мощности
  • Можно обойтись одним источником питания
  • Выходное переменное напряжение инвертируется относительно входного.
  • Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Схема с общим коллектором

  • Большое входное сопротивление
  • Малое выходное сопротивление
  • Коэффициент усиления по напряжению меньше 1.

Схему с таким включением называют «эмиттерным повторителем»

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С1, а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

Характеристики транзистора, включенного по схеме об

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя.

Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях.

Заключение Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.

Активный режим транзистора — это нормальный режим работы транзистора.

При этом параметры транзистора тут вообще никакой роли не играют. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.

Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.

Работу усилителя хорошо видно на временных диаграммах. Рисунок 2.
Как работает транзистор? Режим ТТЛ логика / Усиление. Анимационный обучающий 2d ролик. / Урок 1

Режимы работы биполярного транзистора

В работе биполярных транзисторов выделяют четыре режима: линейный (режим активной работы), насыщения, отсечки и инверсный.

Линейный (усилительный) режим работы биполярного транзистора

Работа транзистора в линейном режиме обеспечивается таким подключением источников питания к ^-«-переходам, чтобы эмиттерный переход был смещен в прямом направлении, т.е. открыт для

Рис. 2.26. ВАХ биполярного транзистора при включении с общей базой: а — входные; б — выходные

основных носителей, а коллекторный — смещен в обратном направлении, т.е. закрыт для основных носителей, но открыт для неосновных (рис. 2.28).

Так как эмиттерный переход открыт для основных носителей, то через него будет протекать ток /э (см. рис. 2.28). Электроны, преодолевая /?-«-переход и попадая в базу (инжекция основных носителей), становятся в ней неосновными носителями. Инжекция дырок из базы в эмиттер будет незначительной, так как база легирована гораздо меньше, чем эмиттер. Некоторое число электронов в базе рекомбинируют с дырками, но большая часть электронов проскочат ее и достигнут базо-коллекторного перехода. Электроны в базе «-/?-«-транзистора являются неосновными носителями; следовательно, при обратном смещении коллекторного перехода они захватываются его электрическим полем и переносятся в коллектор. При обратном смещении коллекторного /(-«-перехода через него также

Рис. 2.27. ВАХ биполярного транзистора при включении с общим эмиттером: а — входные; б — выходные

Рис. 2.28. Усилительный режим работы биполярного я-р-я-транзистора течет тепловой ток неосновных носителей. Этот обратный ток не зависит от тока эмиттера.

Убыль дырок в базе в результате рекомбинации компенсируется протеканием тока базы /б от источника ?эб (см. рис. 2.28). Так как число рекомбинирующих электронов в базе невелико, то и эмиттер — ный ток примерно на два порядка больше базового, /э»/б. По первому закону Кирхгофа можно записать: /э = /б + /к, следовательно, ток коллектора лишь немногим ниже эмиттерного, т.е. можно считать, что /к = /э. Более точное выражение коллекторного тока записывают в виде

где а — коэффициент передачи (усиления) тока эмиттера (а = 0,9- 0,999); /ко — обратный ток коллектора.

В линейном режиме ток коллектора не зависит от напряжения коллектор — база, напряжение база — эмиттер не зависит от напряжения коллектор — база и слабо зависит от тока базы.

Этим свойствам биполярного транзистора в линейном режиме удовлетворяет схема замещения, изображенная на рис. 2.29.

Рис. 2.29. Схема замещения биполярного транзистора

На схеме рис. 2.29 смоделированы следующие характеристики биполярного транзистора:

  • R6, R3 сопротивления базового и эмиттерного слоев полупроводника;
  • • — приведенное сопротивление коллекторного слоя полупро-

• С’ — приведенная барьерная емкость коллекторного перехода

  • (может не учитываться), С’ = ;
  • • источники тока /к и /ко = /’ моделируют прямой и обратный

токи коллектора соответственно, Гко = ———приведенный

обратный ток коллектора;

• (3 — коэффициент передачи (усиления) тока базы, (3 =-(при

Согласно схеме рис. 2.29 можно сказать, что биполярный транзистор — это источник тока, управляемый током (/к = (3/б). Так как сопротивление эмиттер — коллектор зависит оттока базы, то можно также назвать биполярный транзистор электронно-управляемым нелинейным резистором.

При создании электронных устройств используют три основных способа включения биполярного транзистора: схему с общей базой (ОБ) (рис. 2.30, а), с общим эмиттером (ОЭ) (рис. 2.30, б), с общим коллектором (ОК) (рис. 2.30, в).

Рис. 2.30. Схемы включения БТ:

а — с общей базой; б — с общим эмиттером; в — с общим коллектором

Для схемы с общей базой (см. рис. 2.30, а) характерно низкое входное сопротивление (порядка 30 Ом); при этом /вых = /вх, следовательно, нет усиления по току, а есть усиление только по напряжению. Чаще всего такие схемы используются для усиления сигналов от источников с низким сопротивлением (микрофон, антенна). В схеме с общим эмиттером (рис. 2.30, б) входное сопротивление существенно больше (единицы килоом), при этом /вых » /вх и t/Bblx » UBX, т.е. усиление происходит и по току, и по напряжению. В схеме с общим коллектором (рис. 2.30, в) /вых » /вх и ?7ВЫХ = UBX, т.е. усиление происходит только по току, усиления по напряжению нет. Такие схемы называют эмиттерным повторителем и используют, например, как усилители мощности. Входное сопротивление схемы с общим коллектором довольно высокое (десятки килоом), а выходное — сравнительно небольшое.