Особенности состава, свойств и характеристик алюминия

Особенности состава, свойств и характеристик алюминия

Алюминий представляет собой самый распространенный металл в земной коре. Он относится к группе легких металлов, имеет небольшую плотность и температуру плавления. При этом пластичность и электропроводность находятся на высоком уровне, что обеспечивает его повсеместное использование. Итак, давайте узнаем, каковы удельная температура плавления алюминия и его сплавов (пр. в сравнении с железом и свинцом), тепло- и электропроводность, плотность, другие свойства, а также в чем особенности структуры сплавов алюминия и химического их состава.

Плотность алюминия:

Плотность – скалярная физическая величина, определяемая как отношение массы тела к занимаемому этим телом объёму.

Для обозначения плотности обычно используется греческая буква ρ.

ρ = m / V , где m – масса тела, V – его объём.

Плотность алюминия (ρ) составляет 2,6989 г/см 3 или 2698,9 кг/м 3 .

Плотность алюминия приведена при нормальных условиях (согласно ИЮПАК), т.е. при 0 °C и давлении 10 5 (100 000) Па.

Для сведения: 101 325 Па = 1 атм = 760 мм рт. ст.

Необходимо иметь в виду, что плотность металлов может изменяться в зависимости от условий окружающей среды (температуры и давления). Точное значение плотности металлов в зависимости от условий окружающей среды (температуры и давления) необходимо смотреть в справочниках.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

  • ← Плотность магния
  • Плотность калия →

Справочники

Востребованные технологии

  • Концепция инновационного развития общественного производства – осуществления Второй индустриализации России на период 2017-2022 гг. (105 997)
  • Экономика Второй индустриализации России (101 635)
  • Программа искусственного интеллекта ЭЛИС (23 847)
  • Метан, получение, свойства, химические реакции (17 650)
  • Мотор-колесо Дуюнова (15 733)
  • Гидротаран – самодействующий энергонезависимый водяной насос (15 257)
  • Природный газ, свойства, химический состав, добыча и применение (15 146)
  • Прямоугольный треугольник, свойства, признаки и формулы (14 660)
  • Крахмал, свойства, получение и применение (14 449)
  • Целлюлоза, свойства, получение и применение (12 997)

Поиск технологий

О чём данный сайт?

Настоящий сайт посвящен авторским научным разработкам в области экономики и научной идее осуществления Второй индустриализации России.

Он включает в себя:
– экономику Второй индустриализации России,
– теорию, методологию и инструментарий инновационного развития – осуществления Второй индустриализации России,
– организационный механизм осуществления Второй индустриализации России,
– справочник прорывных технологий.

Мы не продаем товары, технологии и пр. производителей и изобретателей! Необходимо обращаться к ним напрямую!

Мы проводим переговоры с производителями и изобретателями отечественных прорывных технологий и даем рекомендации по их использованию.

О Второй индустриализации

Осуществление Второй индустриализации России базируется на качественно новой научной основе (теории, методологии и инструментарии), разработанной авторами сайта.

Конечным результатом Второй индустриализации России является повышение благосостояния каждого члена общества: рядового человека, предприятия и государства.

Вторая индустриализация России есть совокупность научно-технических и иных инновационных идей, проектов и разработок, имеющих возможность быть широко реализованными в практике хозяйственной деятельности в короткие сроки (3-5 лет), которые обеспечат качественно новое прогрессивное развитие общества в предстоящие 50-75 лет.

Та из стран, которая первой осуществит этот комплексный прорыв – Россия, станет лидером в мировом сообществе и останется недосягаемой для других стран на века.

Технические параметры сплавов на основе алюминия

Наличие лигатуры в составе практически не влияет на упругость материала, но увеличивает текучесть, что позволяет использовать его для производства конструкций с разным уровнем нагрузки.

Предел прочности или устойчивости материала к разрушению или деформации под воздействием механических нагрузок зависит от типа обработки и его состава. Для сплавов металла он составляет 38–42 кг/мм², литого алюминия 10–12 кг/мм, деформируемого – 18–25 кг/мм².

Чистый материал обладает высокой пластичностью, а наличие лигатурных компонентов изменяет свойства состава, что позволяет применять материал в разных сферах производства.

Большинство сплавов с большей степенью легирования имеют низкий показатель электропроводности. Теплопроводность многих составов вдвое ниже, чем у чистого алюминия, но этот показатель выше, чем у стали.

Наиболее известными сплавами с алюминием являются такие составы:

  • дюралюминий, включающий лигатурные добавки меди и магния;
  • силумин — соединение с кремнием.

Устойчивость материала к воздействию среды повышают с помощью добавок галлия, олова, индия. Наилучшие коррозионные свойства имеют сплав с марганцем и магнием, а худшие — составы с высокой прочностью.

В зависимости от номинального содержания лития, показатель плотности материала изменяется. При наличии 1,3% лития плотность составляет 2,59 г/см³, 2,2% – 2,58 г/см³, 2,0% – 2,55 г/см³.

Устойчивость к воздействию внешних условий зависит от режима обработки материала. Многие составы, упрочняемые термическим путем, подвержены коррозии под напряжением.

Среди составов на основе алюминия хорошо сваривается авиаль — авиационный алюминий, в составе которого находятся магний, кремний и примеси марганца, меди и хрома. Для большинства сплавов применяется точечная сварка.

С увеличением степени легирования увеличивается прочность материалов и уменьшается пластичность. С ростом температуры прочность материалов меняется в разной степени, что определяет их применение в зависимости от диапазона температур.

Тип упрочнения составов улучшает механические свойства материала: прессованные изделия имеют высшую прочность, чем горячекатаные.

Самые легкие и самые тяжелые алюминиевые сплавы

  • Одним из самых легких алюминиевым сплавом является зарубежный литейный сплав 518.0 (7,5-8,5 % магния) – 2,53 г на кубический сантиметр [1]. Отечественный сплав АМг11 (АЛ22) содержит еще больше магния – от 10,5 до 13,0 %. Поэтому, надо думать, он еще легче, но точных данных у нас нет!
  • Самыми тяжелыми алюминиевыми сплавами являются зарубежные литейные сплавы 222.0 и 238.0 с номинальным содержанием меди 10 %. Их номинальная плотность – 2,95 г на кубический сантиметр [1].
  • Самый легкий деформируемый сплав – алюминиево-литиевый сплав 8090 с номинальным содержанием лития 2,0 %. Его номинальная плотность – 2,55 г на кубический сантиметр [1].
  • Самые тяжелые деформируемые алюминиевые сплавы – сплав В95 и зарубежный сплав 7175: 2,85 г на кубический сантиметр [4].

ПРОИСХОЖДЕНИЕ

Аллюминий, агрегированный с коркой байерита на поверхности. Узбекистан, Навойская область, Учкудук

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико. Самые распространенные вещества, содержащие рассматриваемый металл: полевые шпаты; бокситы; граниты; кремнезем; алюмосиликаты; базальты и прочие. В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

Химические свойства

Алюминий — это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Классификация сплавов

Для классификации рассматриваемых сплавов во всем мире используют четырехзначные цифры, причем первая цифра говорит об основной (фазообразующей) добавке к алюминию. Существуют следующие марки:

  • 1XXX — на 99% чистый металл с добавками Fe и Si;
  • 2XXX — сплавы с медью для самолетной промышленности;
  • 3XXX — добавка марганца (производство алюминиевых банок для напитков);
  • 4XXX — добавка кремния;
  • 5XXX — сплав с магнием;
  • 6XXX — добавки магния и кремния;
  • 7XXX — сплавы с цинком и магнием для производства различных конструкций самолетов;
  • 8XXX — другие элементы.

Удельный вес алюминия

Согласно определению, под удельным весом понимают массу тела, которая приходится на единицу его объема. То есть речь идет о плотности материала. Выше мы уже упоминали, что плотность алюминия в 3 раза ниже, чем у стали. Точное значение его плотности при комнатной температуре составляет 2 698,4 кг/м3. Иными словами, металл тяжелее воды в 2,7 раза.

Плотность любого металлического материала можно рассчитать теоретическим способом. Для этого следует знать атомную массу элемента, тип его кристаллической решетки и расстояние между атомами в ней. В нашем случае имеем так называемую гранецентрированную кубическую (ГЦК) решетку, которая сохраняется у алюминия во всех температурных областях существования его твердой фазы при атмосферном давлении. Ниже показан рисунок, где приводится пример ГЦК кристаллической решетки.

Как видим, кубик, образованный 8 атомами в его вершинах, содержит еще 6 атомов в центре каждой квадратной грани. Поскольку из таких маленьких кубиков с параметром решетки 4,05 ангстрем состоит макроскопический кристалл, то на один кубик приходится 4 целых атома.

Напомним, что плотность веществ определяется по следующей математической формуле:

Применяя ее для ГЦК алюминия, и учитывая приведенную выше информацию, получаем:

Здесь mAl — масса алюминиевого атома, a — параметр решетки.

Подставляя известные значения mAl и a, приходим к ответу: ρ = 2 697 кг/м3, что отлично согласуется с экспериментальным значением.

Заметим, поскольку при увеличении температуры происходит значительное расширение металла, то его плотность снижается на несколько процентов.

Применение алюминия

Ювелирные изделия

В далеком прошлом из-за высокой стоимости алюминия его использовали для изготовления ювелирных изделий. Так, весы с алюминиевыми и золотыми чашами были подарены Д. И. Менделееву в 1889 г.

Когда себестоимость алюминия снизилась, мода на ювелирные изделия из этого металла прошла. Но и в наши дни его используют для изготовления бижутерии. В Японии, например, алюминием заменяют серебро при производстве национальных украшений.

Столовые приборы

По-прежнему пользуются популярностью столовые приборы и посуда из алюминия. В частности, в армии широко распространены алюминиевые фляжки, котелки и ложки.

Стекловарение

Алюминий широко применяют в стекловарении. Высокий коэффициент отражения и низкая стоимость вакуумного напыления — основные причины использования алюминия при изготовления зеркал.

Пищевая промышленность

Алюминий зарегистрирован как пищевая добавка Е173. Ее используют в качестве пищевого красителя, а также для сохранения продуктов от плесени. Е173 окрашивает кондитерские изделия в серебристый цвет.

Военная промышленность

Из-за небольшого веса и низкой стоимости алюминий широко применяют при изготовлении ручного стрелкового оружия — автоматов и пистолетов.

Ракетная техника

Алюминий и его соединения используют в качестве ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твердых ракетных топливах.

Алюмоэнергетика

В алюмоэнергетике алюминий используют для производства водорода и тепловой энергии, а также выработки электроэнергии в воздушно-алюминиевых электрохимических генераторах.