Неразрушающий контроль качества сварочных соединений с помощью магнитной дефектоскопии, технология выполнения основных магнитных методов

Принцип работы данного метода заключается в том, что при намагничивании ферромагнитного металла и сплавов в областях с нарушенной внутренней целостностью появляется зона рассеяния, а на краях дефектов образуются полюса. Происходит фиксация зоны магнитного рассеяния на внешней части детали точно на поверхности той зоны, где внутри образовался дефект. Силовые линии магнитов огибают зону расположения брака и таким образом как бы очерчивают конкретное дефектное место.

Изъяны, что располагаются на глубине до 2 мм, вытесняют силовые импульсы магнитов над поверхностью детали, создавая локальное поле магнитного рассеяния. Это происходит благодаря тому, что:

Существуют дефекты, которые могут вызвать возмущения в распределении линий магнитного потока, не образуя при этом локального рассеяния. Поэтому чем большее препятствие создает сварочный дефект, тем сильнее он вызывает магнитное возмущение. Если место расположения дефекта параллельно направлению электромагнитных силовых линий, то полученное возмущение магнитного потока будет небольшим. Но если тот же самый изъян будет находиться перпендикулярно или под наклоном по отношению к направлению магнитных линий потока, то степень рассеяния потока будет обширной.

С помощью магнитной дефектоскопии есть возможность обнаружения внутренних микротрещин с размером до 0,001 мм ширины.

Виды намагничивания (направления):

  1. Циркуляционный (для обнаружения продольных трещин).
  2. Продольный (для поиска поперечных трещин).
  3. Комбинированный.

Преимущества данного способа контроля:

  • высокая чувствительность и точность обнаружения мест локализации дефектов;
  • быстрая скорость контрольного процесса;
  • доступное оборудование.

Использование магнитного метода контроля сварочных работ возможно только для магнитных металлов.

Суть и особенности магнитной дефектоскопии

У сварных деталей ферромагнитного состава существуют внутренние молекулярные токи – электроны вращаются вокруг своей оси. Они хаотично направлены, без поля, создаваемого магнитами, взаимно компенсируются. Когда к поверхности подносят магнит, внутренние поля подстраиваются под внешние. Методы магнитной дефектоскопии регистрируют возмущения магнитного потока, они возникают в местах препятствий – пустот, на инородных включениях.

Силовые линии будут огибать зону брака в сварном шве. Меняется плотность поля.

Понятно, что несплошности, по направлению совпадающие с потоком силовых линий, выявить дефектоскопом сложно, поэтому контроль делается в нескольких направлениях, чтобы дефекты располагались перпендикулярно или под наклоном. Чем больше внутреннее препятствие, тем сильнее возмущение поля. У дефектов проницаемость в сотни раз ниже.

Принцип методов магнитной дефектоскопии заключается в намагничивании готовых соединений, глубинные изъяны в шве вытесняют силовые импульсы, создается локальное полевое рассеяние. Это изменение улавливает чувствительный дефектоскоп. Намагничивание происходит:

  • за счет пропускания постоянного тока плотностью от 15 до 20 А/мм через 3-6 витков (создается электромагнитное поле);
  • постоянным магнитом.

Дефектоскопы различаются по способу намагничивания и регистрации рассеяния поля. Каждый вид дефектоскопии сварочных швов стоит рассмотреть подробно.

Выявляемые дефекты

Методы МК впервые были использованы в 19 веке. С их помощью оценивали прочность, а также структурное состояние ружейных затворов и оболочек разрывных снарядов. С тех пор успели сформироваться три основные сферы МК:

  • Контроль сплошностей в ферромагнетиках
  • Оценка прочности и структурного состояния ферромагнитных сталей и сплавов
  • Определение фаз в конкретном сплаве

Контроль качества магнитными методами дает возможность выявлять повреждения, обладающие характеристиками:

  • Брак с шириной раскрытия на поверхности обследуемого участка от 0,002 мм при глубине от 0,01 мм
  • Крупные внутренние дефекты, залегающие на глубине от 2 мм
  • Поверхностные повреждения глубиной до 2 мм
  • Брак под немагнитным покрытием толщиною до 0,25 мм

Сегодня магнитный контроль востребован практически во всех промышленных отраслях:

  • Нефтехимия
  • Металлургия
  • Машиностроение
  • Энергетика (ТЕЦ, АЭС)
  • НГК (трубопроводы, промышленные емкости)
  • Авиа-, судо- и автомобилестроение

Грамотное применение методов МК позволяет на ранней стадии выявлять и устранять поверхностные и углубленные повреждения ферромагнетиков

Особенности технологии МК

Метод МК не требует специальной предварительной подготовки, поскольку является бесконтактным. Его суть заключается в анализе поля рассеяния, образующегося в местах скопления дефектов при намагничивании исследуемых объектов.

Проведение МК регулируется национальными и международными стандартами, включая, ГОСТ 21105-87, РД-13-05-2006 и EN 1290:1998.

  1. Магнитная проницаемость несплошности гораздо ниже, чем у остальной части исследуемого объекта. Ее наличие искривляет магнитные силовые линии. Некоторые из них выходят на поверхность пораженного участка, чтобы обойти повреждение и образуют локальный магнитный поток рассеяния
  2. Возникновение полей возмущения фиксируется магнитными преобразователями, среди которых наиболее распространены датчик Холла и его индукционные, феррозондовые, и магниторезистивные вариации
  3. Мероприятия контроля завершаются размагничиванием каждой используемой детали в поле солеонида, питаемого переменным током

Бесконтактный магнитный контроль чаще всего применяют в диагностике:

  • Магистральных трубопроводов:
  • Отдельных труб с любым диаметром
  • Прокатных листов
  • Арматуры
  • Вертикальных стальных резервуаров

Проведение аттестации и обучение специалистов по неразрушающему контролю

Приборы и оборудование

Для намагничивания контролируемых объектов используют стационарные и портативные магнитные дефектоскопы. Первые позволяют с высокой точностью выявлять поверхностные и более глубокие повреждения любой направленности, вторые – контролировать объекты в полевых условиях.

Недостаток диагностических магнитных дефектоскопов заключается в узкой направленности и требовательности к температурному режиму. Для получения более корректных результатов эксперты рекомендуют использовать многоканальную модель с функцией ультразвукового анализа.

  1. Работа прибора начинается его калибровкой с проверкой по эталонам и очищением поверхности контролируемой детали
  2. Намагничивание детали в соответствии с типом намагничивания и параметрами чувствительности
  3. Нанесение индикаторного вещества
  4. Визуальный осмотр детали с возможностью фиксации индикаторного рисунка для дальнейшего анализа с помощью многофункционального дефектоскопа

На основании сравнения полученных рисунков с нормативными образцами делают заключение о возможности целевого применения исследуемого объекта.

Гаммаграфический, рентгенографический и ультразвуковой методы контроля сварных стыков.

Гаммаграфирование – это процесс проникновения гамма-излучения радиоактивных изотопов через толщу материалов. В нашем случае через толщу металла. Гамма-излучение будет интенсивнее, если внутри толщи металла сварного шва будут дефекты: трещины, непровары и т.д. Разница фиксируется на рентгеновской пленке – РТ, РМ, ОРВО. На проявленной пленке можно рассмотреть характер дефектов, их размер и т.д.

Магнитная дефектоскопия представляет собой комплекс методов неразрушающего контроля, применяемых для обнаружения дефектов в ферромагнитных металлах. К дефектам, выявляемым магнитным методом, относят такие дефекты как: трещины, волосовины, неметаллические включения, несплавления, флокены. Выявление дефектов возможно в том случае, если они выходят на поверхность изделия или залегают на малой глубине (не более 2-3 мм).

Магнитные методы основаны на изучении магнитных полей рассеяния вокруг изделий из ферромагнитных материалов после намагничивания. В местах расположения дефектов наблюдается перераспределение магнитных потоков, и формирование магнитных полей рассеяния.

Наиболее распространенной разновидностью метода является магнитопорошковый метод. При использовании метода магнитопорошковой дефектоскопии (МПД) на намагниченную деталь наносится магнитный порошок или магнитная суспензия, представляющая собой мелкодисперсную взвесь магнитных частиц в жидкости. Частицы ферромагнитного порошка в Екатеринбурге, попавшие в зону действия магнитного поля рассеяния, притягиваются и оседают на поверхности вблизи мест расположения несплошностей.

Контролируемые объекты:

Изделия и конструкции из ферромагнитных металлов

Преимущества:

— высокая производительность и возможность обнаружения поверхностных и подповерхностных дефектов;

Читайте также  Отделка погреба

— выявление не только полых несплошностей, но и дефектов, заполненных инородным веществом;

— применение не только при изготовлении деталей, но и в ходе их эксплуатации, например, для выявления усталостных трещин.

Недостатки:

— сложность определения глубины распространения трещин в металле

Применяемое оборудование:

— устройство для размагничивания и намагничивания контролируемых объектов

— магнитный индикатор (порошки, суспензии, магнитогуммированные пасты)

— контрольные образцы для магнитнопорошковой дефектоскопии.

Нормативные документы в Екатеринбурге:

ГОСТ 21105-87. Контроль неразрушающий. Магнитопорошковый метод.

ГОСТ 24450-80. Контроль неразрушающий магнитный. Термины и определения.

ГОСТ 25225-82. Контроль неразрушающий. Швы сварных соединений трубопроводов. Магнитографический метод.

ГОСТ 30415-96. Сталь. Неразрушающий контроль механических свойств и микроструктуры труб. Магнитный метод.

ГОСТ Р 52005-2003. Контроль неразрушающий. Метод магнитной памяти металла. Общие требования.

Стандарты EN 1290:1998, EN 1291:1998, РД-13-05-2006.

Вместо заключения

Дефектоскоп — прибор, который можно применять в связке с многими методами контроля. Существует цветная дефектоскопия сварных швов, акустическая, вихретоковая, термоэлектрическая и многие другие. Но среди них всех особняком стоит магнитно-порошковая дефектоскопия, поскольку это мобильный и простой в применении метод.

С помощью магнитного дефектоскопа можно провести контроль в труднодоступных местах (в том числе на внутренней стороне детали, например, трубы), можно проводить контроль на высоте, поскольку оборудование очень компактное и легкое. Словом, преимуществ много. А вы когда-нибудь сталкивались с магнитно-порошковой дефектоскопией? Расскажите о своем опыте в комментариях. Желаем удачи в работе!

Что такое неразрушающий контроль качества?

Неразрушающий контроль качества – это, как следует из названия, выявление и регистрация характеристик продукции без нарушения ее потребительских качеств либо обследование оборудования, машин и механизмов без вмешательства в их эксплуатацию. Неразрушающий контроль может выполняться различными способами, которые базируются на обследовании объекта при помощи ультразвуковых, акустических или электромагнитных волн и прочих физических явлений.

Преимущества контроля качества неразрушающими методами:

  • большая скорость работы;
  • достоверность показаний;
  • доступная цена услуг.

Способы неразрушающего контроля допускается использовать как для обследования объекта в целом, так и для контроля отдельных механизмов или узлов. Это позволяет исследовать только места, наиболее уязвимые с точки риска возникновения дефектов.

Если объект выполнен из различных материалов, то возможно применение различных способов неразрушающего контроля. Характеристики отдельных деталей при этом остаются неизменными, а исследования можно проводить как одновременно, так и асинхронно.

Важно отметить, что диагностику с использованием приборов неразрушающего контроля можно проводить сколь угодно. Но для проведения диагностики важно подготовить объект к контролю, например снять ЛКП или теплоизоляцию, в том числе и полностью остановить оборудование, например в случае с котлами. Для некоторого вида технических средств можно в динамике исследовать состояние объекта в процессе эксплуатации и установить, как различные факторы влияют на материал. При систематическом проведении обследования технологического оборудования с применением НМК минимизируется риск аварий и обеспечивается эффективная корректировка всех процессов производства.

Главное достоинство технологии неразрушающего контроля состоит в том, что появляется возможность исследовать именно тот объект, который будет эксплуатироваться. Эти способы исследования характеристик и состояния объектов дают гарантию, что именно данный объект прошел проверку и признан годным к использованию.

  • Данный метод контроля является вредным для здоровья за счет того, что идет контакт с гамма-лучами;
  • Для проведения процедур нужна специальная пленка;
  • Контроль оказывается дороже, чем другие разновидности;
  • Практически всегда он проводится стационарно.

ГОСТ

Гаммаграфический контроль сварных соединений трубопроводов и прочих изделий проводится по ГОСТ 17636-2.

Принцип проведения

Принцип действия данного метода неразрушающей дефектоскопии основан на приникающих действиях гамма лучей. Источник создает гамма-излучение. Под действием электрической энергии в излучателе частицы вырываются и вылетают в заданном направлении. Само излучение воздействует относительно недолгое время, но аппарат должен быть настроен так, чтобы оно распространялось равномерно, иначе невозможно будет отличить слабые места от тех, где находятся дефекты.

Принцип действия метода неразрушающей дефектоскопии

После того, как лучи вылетают в заданном направлении, они должны встретиться с исследуемым объектом, для чего его располагают как раз на пути их следования. Здесь и происходит основной этап. Частицы, которые встречаются с металлической поверхностью, останавливаются ею. Задерживается не весь поток, а только одна лишь его часть, которая зависит от того, насколько большая плотность металла, его толщина и так далее. Таким образом, если в заготовке нет ни каких дефектов и вся поверхность является целостной, то в итоге через всю нее пройдет примерно одинаковое количество частиц. На пленке или экране это будет отчетливо видно, так как ни в каком месте не будет перепадов.

Контроль сварных соединений гаммаграфическим методом

Если же внутри присутствует скрытая раковина, имеются поры, как единичные, так и в скоплениях, то они не смогут задержать такое же количество частиц, как сплошной металл. Таким образом, когда весь пучок пройдет через исследуемую деталь, то на пленке станут видны те места, где было меньше металла. Соответственно, именно в этих областях находятся дефекты.

Проявление пленки происходит тогда, когда на нее непосредственно попадает гамма излучение. Это специальный материал, который меняет свой цвет при контакте с частицами. Чем больше их попадает на поверхность, тем больше контраст между не засвеченными областями. После проведения процедуры снимок не подвергается другим воздействиям и не портится от солнечного света. Результат можно узнать практически сразу. Во время проведения процедур нужно использовать специальную защиту, а также обеспечить защиту от излучения места, где все это проводится. Ведь этот метод небезопасен как и любой радиографический контроль.

Технология проведения

Гаммаграфический контроль сварных соединений – это работоспособность и исправность оборудования. Далее устанавливается исследуемый образец и пленка. После этого необходимо настроить прибор на требуемое значение, чтобы пучок излучения смог не только пройти сквозь деталь, но и показать контрастное изображение дефектов, если те имеются.

«Обратите внимание! При неправильной настройке результаты будут неточными, но всегда можно повторить анализ.»

Затем включается прибор и испускаются гамма лучи, попадающие на пленку. После этого остается только проверить результат и вычислить место расположения найденного дефекта.

Рентгеновский контроль

Этот метод обыкновенно используется для дефектоскопии крупных сварных металлических конструкций, подверженных коррозионному воздействию атмосферы: трубопроводов, опор и несущих и любых других металлических конструкций. Рентгеновские аппараты могут быть стационарные (кабельного и моноблочного типа), переносные или монтироваться на кроулеры. Кроулер – самоходный, дистанционно управляемый робот, несущий автономный рентгеновский комплекс. Он предназначен для контроля качества сварных соединений трубопроводов. Такой аппарат по команде извне перемещается в трубопроводе, останавливается и снимает рентгенограмму. Экспонирующее устройство кроулера работает полностью независимо. Одни рентгеновские аппараты требуют экспонирования и проявки специальной пленки, другие отражают информацию сразу в цифровом виде.

Среди аппаратуры рентгеновского контроля нужно назвать продукцию ЗАО «Синтез НДТ», входящую в группу предприятий «ЮНИТЕСТ». Стационарные аппараты серии «Витязь» изготовлены моноблоком, со стеклянной рентгеновской трубкой. Их стоимость относительно невысока. Серия «Бастион» – аппараты кабельного типа, в них используется металлокерамическая трубка, что обеспечивает надежность и длительный срок службы, но они более дороги. Как правило, стационарные аппараты используются для контроля материалов или готовой продукции, они отличаются от переносных высокой стабильностью параметров тока, напряжения и минимумом пульсаций. Переносные рентгеновские аппараты серии «РПД», того же производителя, предусматривают и варианты для работы в тяжелых климатических условиях, на Крайнем севере. В этом случае, блок питания и управления монтируется в металлическом корпусе, категория защиты — IP65. На кроулеры устанавливаются панорамные рентгеновские трубки серии СХТ. Они обеспечивают максимально возможную жесткость спектра излучения с высоким КПД, аппараты питаются от аккумуляторной батареи кроулера. Оборудование СХТ снабжено системой принудительного воздушного охлаждения анодов вентиляторами.

Читайте также  Рейки в интерьере

Сегодня не существует одного универсального метода, который позволял бы измерить все свойства металлического изделия разом. Поэтому методы контроля качества применяются в комплексе: на стадиях разработки и изготовления – разрушающие, в процессе эксплуатации – различные неразрушающие. Выбор конкретного способа контроля зависит не только от специфики и назначения металлической конструкции, но и от многочисленных внешних факторов, которые непременно учитываются специалистами.